DIGITALCOMMONS

— @WAYNESTATE— Wayne State University

Wayne State University Dissertations

1-1-2016

Sharing-Aware Resource Management Algorithms
For Virtual Computing Environments

Safraz Rampersaud
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

b Part of the Computer Sciences Commons

Recommended Citation

Rampersaud, Safraz, "Sharing-Aware Resource Management Algorithms For Virtual Computing Environments" (2016). Wayne State
University Dissertations. 1477.
https://digitalcommons.wayne.edu/oa_dissertations/1477

This Open Access Dissertation is brought to you for free and open access by Digital Commons@WayneState. It has been accepted for inclusion in
‘Wayne State University Dissertations by an authorized administrator of Digital Commons@WayneState.

www.manharaa.com

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1477?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages

SHARING-AWARE RESOURCE MANAGEMENT ALGORITHMS FOR
VIRTUAL COMPUTING ENVIRONMENTS

by
SAFRAZ RAMPERSAUD
DISSERTATION

Submitted to the Graduate School
of Wayne State University,
Detroit, Michigan
in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

2016
MAJOR: COMPUTER SCIENCE

Approved By:

Advisor Date

www.manharaa.com

©COPYRIGHT BY
SAFRAZ RAMPERSAUD
2016
All Rights Reserved

o AJLb

www.manharaa.com

DEDICATION
In memory of Gerald Keith Larson. We started the Ph.D. program together

but unfortunately you passed on before completing the journey.

i

www.manharaa.com

ACKNOWLEDGEMENTS

[am indebted to Dr. Daniel Grosu for his dedication, direction and time while leading
this body of research as my Ph.D. adviser. I hope we always keep the lines of communication
between us open following the completion of this fundamental stage. I would like to thank
the members of my dissertation committee Dr. Nathan Fisher, Dr. Boris Mordukhovich, Dr.
Robert Reynolds and Dr. Loren Schwiebert for their support over the years. I have gained
advice, ability, and perspective from this committee on both personal and professional levels
and hope that in some way I can pay the investment forward.

I would like to acknowledge my mother and father, Farida and Feizal Rampersaud.
I offer my sincerest gratitude for their unconditional support; only they know how far of
a comeback I've had to make to get here. I would like to acknowledge my brother, Reza,
and my sister, Farah, for keeping life interesting. [am glad I was home to share in their
experiences which motivated me to persist onward. [would also like to acknowledge my
significant other, Bernadette, for the emotional support and for keeping me in good spirits.

My research was supported in part by NSF grants DGE-0654014 and CNS-1116787
and from opportunities made available by the College of Engineering in both the Department

of Chemical Engineering and the Department of Computer Science.

il

www.manharaa.com

TABLE OF CONTENTS

Dedication i
Acknowledgements ii
LIST OF FIGURES vii
LIST OF TABLES viii
CHAPTER 1: INTRODUCTION 1
1.1 Background 1
1.1.1 The Dawn of the Hypervisor 2

1.1.2 The Practice of Page Sharing 4

1.1.3 Foundations of Sharing-Aware Resource Management 7

1.1.4 Our Contributions 12

1.2 Organization L 15
CHAPTER 2: SINGLE-RESOURCE VM MAXIMIZATION 16
2.1 Introduction 16
2.1.1 Our Contribution 17

2.1.2 Related Work 18

2.1.3 Organization 19

2.2 Sharing-Aware VM Maximization 20
2.3 Greedy Approximation Algorithm (G-SAVMM) 20
2.4 G-SAVMM Properties 26
2.5 Experimental Results. Lo Lo 29
2.5.1 Experimental Setup 30

2.5.2 Analysis of Results 31

2.6 Summary e 34
CHAPTER 3: MULTI-RESOURCE VM MAXIMIZATION 35
3.1 Imtroduction 35

v

www.manharaa.com

3.1.2 Related Work 37

3.1.3 Organization 39

3.2 Multi-Resource Sharing-Aware VM Maximization 40
3.3 Binary Multilinear Program Formulation 42
3.4 Greedy Approximation Algorithm (G-MSAVMM) 46
3.5 G-MSAVMM Properties 53
3.6 Experimental Results o7
3.6.1 Experimental Setupo o7
3.6.2 Analysisof Results L 64

3.7 Summary ... 70
CHAPTER 4: MULTI-RESOURCE VM PACKING 73
4.1 Introduction 73
4.1.1 Our Contribution 74
4.1.2 Related Worko 74
4.1.3 Organization 76

4.2 SA-OVMP: Problem 7
4.3 SA-OVMP: Algorithms 79
4.3.1 Next-Fit-Sharing (NFS) Algorithm 81
4.3.2 First-Fit-Sharing (FFS) Algorithm 84
4.3.3 Best-Fit-Sharing (BFS) Algorithm 86
4.3.4 Worst-Fit-Sharing (WFS) Algorithm 92

4.4 Offline Sharing-Aware VM Packing 92
4.5 Experimental Results 95
4.5.1 Experimental Setup L 95
4.5.2 Analysisof Results 100

4.6 SUMIATY e e 105

www.manharaa.com

CHAPTER 5: CONCLUSION 107

5.1 Summary of Contributions L oo 107
5.2 Future Research Directions 0oL 108
5.2.1 Analyzing Sharing-Aware Online VM Packing Performance 108

5.2.2 Sharing-Aware Algorithms for Container Management 109

5.2.3 Sharing-Aware Streaming Resource Management 110
APPENDIX 111
REFERENCES 123
ABSTRACT 124
AUTOBIOGRAPHICAL STATEMENT 125

vi

www.manharaa.com

—

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

LIST OF FIGURES
Page sharing among two VM tenants.
G-SAVMM: Execution Example.
G-SAVMM: Revenue Ratios vs. Sharing Stratifications.
G-SAVMM: Capacity Ratios vs. Sharing Stratifications.
Page Sharing Among VMs.
G-MSAVMM Efficiency Metric Calculation: Iteration 0
G-MSAVMM Efficiency Metric Calculation: Iteration 1
G-MSAVMM Efficiency Metric Calculation: Iteration 2
Page Sharing Percentages Table: OS.
Distribution of Google Type VMs in Experiment.
Sharing vs. non-Sharing Memory Utilization.
Average Aggregate Revenue Ratios.
Average Revenue Per Server. L.
Memory / CPU Utilization.
W30: G-MSAVMM behavior for different VM request configurations. . .
W50: G-MSAVMM behavior for different VM request configurations. . .
W100: G-MSAVMM behavior for different VM request configurations. .
SA-OVMP: VM Requests and Resource Configuration.
NFES: VM Assignment
FFS: VM Assignment
BFES: Init
BFS: VM 1 Assignment
BFS: VM 2 Assignment oo
BFS: VM 3 Assignment
BFS: VM 4 Assignmento

BFS: VM 5 Assignment

Vil

Y
26
32

68

www.manharaa.com

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20

Figure 4.21

BFS: VM Final Assignment 91
Optimal VM Assignment 93
Sharing parameter values among V3, Vyand Vg 95
85% Low Request 1000 VM Stream. 97
15% Low Request 1000 VM Stream. 98
Server Configurations. oL 99
Average Memory Reduction: 500 VM Stream. 101
Average Memory Reduction: 1000 VM Stream. 102
Excess Active Servers: 500 VM Stream. 103
Excess Active Servers: 1000 VM Stream. 103
Average Active Servers Over All 500 VM Streams. 104
Average Active Servers Over All 1000 VM Streams. 105

viil

www.manharaa.com

LIST OF TABLES

Table 2.1 SAVMM Notation. 21
Table 2.2 Efficiency Metric Calculation Example. 26
Table 3.3 MSAVMM Notation. 41
Table 3.4 VM Characteristics and Sharing Relationships. 43
Table 3.5 G-MSAVMM Experiment: VM Instance Types. 59
Table 3.6 Algorithms Used in Experiments. 63
Table 4.7 SA-OVMP Notation. 7
Table 4.8 SA-OVMP Experiment: VM Instance Types. 96

X

www.manharaa.com

CHAPTER 1: INTRODUCTION

Virtualization, i.e., the process of abstracting a state from a primal resource such that
multiple instances of the abstraction may operate within a single environment simultaneously,
has played a dominant role in distributed computing over the past two decades. Cloud
service providers, public and private institutions, etc., derive significant value by extending
the breadth of their virtualization technology in order to optimize the use of their resources.
For many of these entities, this directly translates to cost savings and/or an increase of
revenue. Our inquiry focuses on increasing the efficiency of resource management strategies
within a virtual computing environment by exploiting the potential for sharing resources. Our
interpretation of virtual computing environment corresponds to any computing environment
where resources can be virtualized.

Our research focuses on virtual memory reclamation techniques, specifically page
sharing, and how this process influences resource management strategies when providers are
bound to allocate resources in a variety of settings within a virtual computing environment.
From the algorithmic perspective, inquiries of this nature have only been investigated through
a single paper, Sindelar et al. [86], outside of our own contributions. At a time when cutting-
edge technologies such as “wearable” devices and the internet-of-things (IoT) are heavily
dependent on large-scale virtualization of services for operability, service providers, now and
in the future, should improve resource utilization at every opportunity to support these
innovations at scale. Therefore, designing efficient resource management strategies in virtual
computing environments is pivotal to a growing industry.

1.1 Background

In this section, we introduce the concepts that will serve as the foundation for this
dissertation. The contents therein are an introduction to virtualization, an explanation of
how page-sharing operates, a motivation for formulating page sharing relationships, and a

review of relevant approximation algorithm concepts and models used throughout our work.

www.manharaa.com

We then present our contributions which make up the building blocks of this dissertation
and close outlining the chapters within this dissertation.
1.1.1 The Dawn of the Hypervisor

In 1974, Popek and Goldberg [75] proposed sufficient conditions for the efficient ex-
ploitation of unused computing resources within a computer architecture. First-generation
computers offered computing capabilities for mostly single tasks and second-generation com-
puting extended usability by dedicating more specialized instructions to the hardware and
allowed users more freedom to design processes and applications through high-level pro-
gramming languages. In the third-generation of computing, internal relocation and trap
mechanisms, time-sharing and operating system multitasking were used to manage comput-
ing machine resources in order to perform tasks fast without having to utilize all the available
machine resources; paving the way for system resource redistribution.

Popek and Goldberg envisioned an update to the third-generation computing era
where physical machines (PMs) could abstract a duplicate of themselves and isolate their
processes from other abstractions on the same PM efficiently. Their ideas motivated the
use of a software layer known as the virtual machine monitor (VMM), or hypervisor, which
would support three main functionalities: (i) creates a virtual machine environment nearly
identical to an environment directly supported by a PM, (ii) instantiation of the abstractions
would only suffer minimal performance degradation, and (iii) the system resources would
be controlled by the VMM software layer; situated between the abstractions and the PM
resources from which it is supported. Then, any abstraction under the control of the VMM
would be known as a virtual machine (VM).

In order for VMs to operate, they must satisfy three main properties: (i) efficiency,
the VM should be able to execute user processes without requiring VMM support outside
of acquiring resources; (ii) resource control, the VMs may not access or modify the system
resources directly; and (iii) equivalence, not considering timing or lack of resources, the VM

execution under a VMM should be near indistinguishable from process execution natively on

www.manharaa.com

a PM. In order to characterize these properties, Popek and Goldberg classified the types of
machine instructions used in Instruction Set Architectures (ISA) into three categories: (a)
privileged, processor instructions which perform a trap in user mode and do not perform a
trap if they are in system (kernel) mode; (b) control sensitive, processor instructions which
attempt to change system resource configurations; and (c) behavior sensitive, processor in-
structions which are dependent on the system resource configurations. Under these categories
of instruction types, Popek and Goldberg |75] introduced the first theorem of virtualization
as follows:

Theorem 1.1.1. For any conventional third-generation computer, an effective VMM may
be constructed if the set of sensitive instructions for that computer is a subset of the set of
privileged instructions.

Theorem 1.1.1 states that if an architecture satisfies all properties (i) through (iii)
by classifying processor instructions into (a) through (c), and if the VMM sensitive in-
structions are a subset of its privileged instructions, then the architecture is virtualizable.
Since Theorem 1.1.1 is only a sufficient condition, architectures which do not satisfy the
stated requirements may still be virtualizable either through further modifications, e.g.,
binary-translation, or only be partially virtualizable, e.g., para-virtualization. Popek and
Goldberg’s second theorem corresponds to recursive virtualization, i.e., abstracting a VMM
through a VM abstraction. Their theorem is as follows:

Theorem 1.1.2. A conventional third generation computer is recursively virtualizable if it
is: (1) virtualizable, and (2) a VMM without timing dependencies can be constructed for it.

The first component of Theorem 1.1.2 follows from Theorem 1.1.1. The second com-
ponent of Theorem 1.1.2 constrains the VMM to execute without timing dependencies. If
timing dependencies exist for the abstracted VMM, then this could lower performance which

would violate the equivalence property.

www.manharaa.com

1.1.2 The Practice of Page Sharing

Page sharing is a memory reclamation technique which hypervisors use in order to
reduce memory utilization from among a group of VM tenants residing on the same PM.
The process, managed by the hypervisor, entails identifying two or more VM tenants which
run similar processes such as applications, libraries, and /or operating systems; all consisting
of physical blocks of memory, where a lower level of granularity for these physical blocks
of memory are known as pages. If two or more VM tenants execute similar processes on
the same PM, then the hypervisor can support the deduplication of identical pages for
multiple VM tenants without interrupting their intended processes. When deduplication
occurs, a single page survives and is used as the reference page, or is shared, among VM
tenants executing similar processes. As an example, Figure 1.1 illustrates the end result
of a page being shared among two VM tenants. Both VM tenants necessitate six pages of
memory, where the fifth page within VM1’s memory block is identical to the third page
within VM2’s memory block. The hypervisor identifies this equivalence, deduplicates the
similar pages among the VM tenants, manages a copy of the page within its own block of
memory and provides references from that page to the appropriate locations within the VMs
memory block in lieu of managing multiple, identical physical memory pages; hence, the
process of page sharing has occurred. The concept of memory sharing was introduced in
1972 by Parmelee et al. [73]. Shortly thereafter, system implementations of memory sharing
features were proposed by Bagley et al. |[4]. Motivated by the authors’ desire to develop a
centralized library management database among a group of users, the VMM would not move
physical memory from one user to another, but rather changes to the references, addresses
and privileges of the users page table entries would occur in order to share the memory
features. The users could then access and modify content within the database without the

VMM transferring memory from one user to another through managed pointer references to

the data of interest.

www.manharaa.com

Figure 1.1: Page sharing among two VM tenants.

In the late 1990s, a different motivation lead to a resurgence of considering how re-
sources can be shared through the VMM. In 1997, research brought forth by Bugnion et
al. [15] was motivated by the need to manage large-scale, shared-memory multiprocessor
operating system resources. From their perspective, operating system software was not de-
veloping as fast as needed to accommodate large-scale systems for new memory and processor
hardware. A feature of their proposed solution was to modify the hypervisor layer to take
advantage of shared memory among VM tenants in the form of transparent page sharing
(TPS). This technique based page sharing on page characteristics such as origin and loca-
tion within the hard disk. The VM tenant had opportunities to access the shared pages
but issues would occur if the memory pages were modified. As a result, Bugnion et al. [15]
implemented a system composed of copy-on-write disks and operations to allow VM tenants
to share the original pages; yet, for the VM of interest desiring to modify memory through
a shared page, a private copy was created by the hypervisor and accessed strictly by the
modifying VM only.

Transparent page sharing lead the way for large systems to minimize their memory
resources; yet, in order to operate correctly, modifications to the VM tenant operating system

would have to occur. Recognizing this as a potential liability, Waldspurger |98] is credited

www.manharaa.com

with the introduction of a new page sharing technique called content-based page sharing.
In order to implement content-based page sharing, any hypervisor will routinely perform a
search which scans for memory pages among VM tenants which are identical. A brute-force
search through all VM tenants for determining identical pages is expensive with a runtime of
O(n?), where n is the number of VM tenants. Instead of a brute-force method, a hash table
of VM tenant pages is managed by the hypervisor in order to determine identical pages in
less time. Early on, page-sharing systems implemented hashing algorithms such as Jenkins
hashing function by Jenkins [45], then later implemented a more efficient algorithm, Super-
FastHash by Hsieh [44], in order to capture potential page sharing opportunities within a
hash table.

Typically, hypervisor implementations operate on blocks of memory pages in sizes of
either 4 KB or 20 MB. Research has shown that operating on the former size makes finding
identical page blocks more difficult than in the latter size [5]. Each memory page, which is
evaluated for sharing, will have a generated hash value associated with it based on its bit
content. The page hash value is then checked against other hash values in a hash table,
where the table entries consist of both the hash value and a page number which identifies
the original page, managed by the hypervisor, to be shared. If a match is determined, a
comparison between the potential and the original page ensues to determine if they are
bit-wise identical. If the bits match exactly, a reference to the original page is created for
the potential page and the potential page memory is reclaimed. Lastly, the original page is
flagged as read-only and then marked as copy-on-write by the hypervisor. A shared page
may be accessed by VM tenants but not modified explicitly. In the case a VM tenant requires
a write operation relative to the shared page, the hypervisor generates a private copy of the
shared page to be accessed by the VM tenant and provided with read-write access. Other

VM tenants which share the page will not have access to the private copy.

www.manharaa.com

1.1.3 Foundations of Sharing-Aware Resource Management

Our research focuses on the design and analysis of sharing-aware resource manage-
ment algorithms. The differences between our proposals and the existing techniques are that
existing techniques do not focus on capturing the utility of memory sharing when allocating
VM tenants onto PM resources and they restrict the relationship between VM tenants and
their memory pages to a specific model when attempting to identify page sharing oppor-
tunities. Therefore, if we consider page-sharing within a variety of more traditional VM
allocation problems, the process becomes more difficult to manage and further modifications
to existing algorithms are required. Considering the example from Figure 1.1, we formalize
a sharing relationship where both 1V} and V5 are composed of six pages and an identical
page is shared between them. If we aggregate the amount of memory required to host the
VM tenants and include the pages managed by the hypevisor, we can derive the following

relationship,

(Vi) Un(Vo)| < [m(Va)[+ [(V2)], where 0
[m(Vi) Um(Va)] = 11 & [x(Vi)] + | (V3)] = 12

and 7(V;) represents the set of memory pages required by VM V;. The right-hand side of
Equation 1.1 corresponds to the number of memory pages requested by each VM, while
the left-hand side corresponds to pages allocated by the mechanism, that is allocating the
shared pages only once in memory. While this is a small example, it nonetheless expresses
how, through page sharing, the aggregate number of memory pages which are required to
be managed is less than the total number of requested memory pages by the VM tenants;
reflecting a triangle-like inequality on the number of required pages. Moreover, greater insight
into how many pages are required by the hypervisor to host both VMs can be obtained by

re-expressing the union of pages between the two VM memory page sets as,

(VDU [r (V)| = [x(V)] + [x(V2)] = [z(Vi 0 V3)], or (1.2)

www.manharaa.com

= [r(V)l+ |7 (Vo)| = (Vi N V3)]. (1.3)

Ur(vi)

Naturally, we can extend the relationship to the general case for M VM tenants, where the
aggregate memory pages required to host all the tenants by the hypervisor is identified as the
union of all pages requested. Due to the properties of sets, only unique pages will be elements
of the union; whereby, any of these pages are shareable. Similar in form to Equation 1.3, we

can expand the right side for the general case as follows,

M M
Urvi| =) 7 (vi) = Y a(Vi, N Vi) +
j=1 j=1 J1<J2
"+(_1)T+1 Z 71-(lemvjzm"'mvjr)"|_
J1<g2<-<jr
o+ (=) (VN VNNV, (1.4)

M

where Z 7V, NV, N---NV;) is taken over all () possible subsets of size r
J1<je<--<jr "

from the set {V3, Vs, ..., Vys}. Based on the inclusion-exclusion identity from probability

theory [85], Equation 1.4 can be simplified and re-expressed in set notation form on the

indices in the right hand side as follows,

Urv|= > (0« (V).

JeP(V) jeJ
The set notation index on J in Equation 1.5 corresponds to an index from the power set

(1.5)

of the set of VMs, P(V), where |V| = M. The right hand side of Equation 1.5 serves as
a basis to characterize the general page sharing relationship between M VM tenants and
their subsets in “offline” environments. In order to determine the optimal VM allocation in
“offline” environments while considering page sharing, optimization programs which exhibit
characteristics of nonlinearity and nonconvexity can be modeled and solved for by considering
the right hand side of Equation 1.5 as the program’s memory constraint shown in Chapters

| pages can be shared and all other resources are available, then

www.manharaa.com

more VMs may be allocated to utilize more efficiently the memory resource. Unfortunately,
calculating the right hand side of Equation 1.5 to determine the number of pages required
among a set of M VM tenants requires an exponential number of operations, making the
computation infeasible. Therefore, we have to rely on approximation algorithms which can
determine VM allocations while considering page sharing and can execute in reasonable time
and generate reasonable results. In the following subsections, we review the approximation
algorithms concepts and system models which underpin the design of our sharing-aware
resource management algorithms.
The Knapsack Problem
We now briefly describe the classic knapsack problem and its application to sharing-

aware resource management. The knapsack problem [95] is a classic combinatorial optimiza-
tion problem described as follows:

The Knapsack Problem: Given a set S = {ay,...,a,} of objects, with size(a;),

revenue(a;)€ Z*, and a “knapsack capacity” B € Z*, find a subset of objects

whose total size is bounded by B and the total revenue is maximized.
Problems of this combinatorial nature are N'P-hard [32| and have been investigated well
before the turn of the 20th century. In 1957, Dantzig coined the term knapsack in observation
of certain classes of combinatorial problems which could be modeled as discrete-valued, linear
programming problems. The standard 0-1 integer programming version of the knapsack

problem can be formulated as follows [60]:

n
max E D;T;
J=1

n
s.t. g wjxr; < ¢
j=1

where x; € {0, 1}, Vj € {1,2,...,n}

and p; is the revenue of the j™ item, w; is the size of the 4™ item, ¢ is the knapsack capacity

and z; is a boolean decision variable which determines if the 4™ item should be included

www.manharaa.com

10

in the “knapsack”, x; = 1, or should not be included, z; = 0. Many variations of the
standard formulation have have been investigated in the research literature when framing
knapsack-like problems with specific qualities, e.g., fractional items, multi-dimensional, non-
linear objectives, etc. Heuristic solution techniques have been formulated early on in order
to solve knapsack problems based on dynamic programming [25|, greedy algorithms [58]
and branch & bound techniques [55]. A comprehensive treatment of knapsack variant prob-
lems, approximation algorithms for solving them, and performance analyses can be found in
Vazirani [95], Martello and Toth [60], and Kellerer [52].

Specific to our research, we investigate VM Mazimization which describes the problem
of allocating VMs onto a single server to maximize the revenue, where the revenue is the
sum of the revenue derived from hosting each individual VM; which in the most general
form, can be modeled as the knapsack problem. When the sharing of pages among the VMs
is considered, the problem of VM revenue maximization is no longer directly equivalent to
the knapsack problem and existing algorithms will produce less than the maximum revenue
due to not allocating additional VMs on the extraneous server resources. Thus, the VM
Maximization problem is considered a new variant of the knapsack problem in which the
items can share space in the knapsack.

The Bin-Packing Problem

We now briefly describe the classic bin packing problem and its application to sharing-
aware resource management. The origins of the bin packing problem were inspired by the
knapsack problem through applications of the cutting stock, Gilmore and Gomory [34|, and
job-shop scheduling, Conway et al. [22], problems from the 1960s. Both of these applica-
tions previously modeled their problems as knapsack variants in order to maximize a specific
objective. When the objective shifts from identifying the subcollection of items which maxi-
mizes a value, to minimizing the number of “knapsacks” required to complete an assignment
of items, the problem is then reformulated into a bin packing problem. The bin packing [95]

problem is a classic combinatorial optimization problem which is described as follows:

www.manharaa.com

11

The Bin Packing Problem: Given a bin S of size V and a list of n items with

sizes ai,ay,...,a, to pack, find an integer number of bins B and a B-partition

81U~-~USB of the set {1,2,...,n} such that Zai <V, Vk = 1,2,...,B
1€S;
and the number of bins is minimized.

The standard 0-1 integer programming version of the bin packing problem can be

formulated as follows [60]:

n
min g Yi
i=1

s.t. ijxij <cy, Vie{l,2,...,n}

j=1

sty wy=1,Vie{l,2,... n}

j=1
where z;; € {0, 1}, Vi,j € {1,2,...,n}
and y; € {0, 1}, Vje{1,2,...,n}

and c is the capacity of each bin, w; is the weight of the 4™ item, y; is a boolean decision
variable which determines if the i bin should be used, y; = 1, or should not be used, y; = 0,
and x;; is also a boolean decision variable which determines if the 4™ item should be assigned
to the i bin, x;; = 1, or should not be assigned accordingly, x;; = 0. Due to combinatorial
nature of assigning items for every combination of bins, the bin packing problem is also N'P-
hard [32]. As a result, a suite of heuristic algorithms were developed which solve the classic
bin packing problem. In 1972, Garey et al. [31] designed and analyzed several algorithms
for the bin-packing problem; namely, First-Fit, Best-Fit, First-Fit-Decreasing and Best-Fit-
Decreasing. Further research in this domain naturally followed in Johnson [49]; broadening
the class of heuristic algorithms solving the bin packing problem in which algorithms belong-
ing to the same class were characterized by similar worst case behavior. In 1974, a thorough
analysis of the aforementioned works was published by Johnson et al. [48] which designed

and analyzed a suite of approximation algorithms for the bin packing problem.

www.manharaa.com

12

Several variations on the standard formulation have appeared in the literature for
framing bin packing problems with specific qualities, e.g., bin packing with variable sized
bins, bin packing with item rejection, bin packing with item fragmentation, etc. Approxi-
mation algorithms have been studied rigorously over half a century for solving bin packing
problems and their variants. A comprehensive survey on approximation algorithms for classic
bin packing problems is by Coffman et al. [20]. Approximately three decades later, Coffman
et al. [19] provided an updated survey of bin-packing problems.

Specific to our research, we investigate VM Packing which describes the assignment of
VM requests onto a minimum number of active servers required to instantiate the requests;
which in the most general form, can be modeled as the bin packing problem. When the
sharing of pages among the VMs is considered, the problem of determining the minimum
set of active servers is no longer directly equivalent to the bin packing problem and existing
algorithms will activate more servers than necessary; resulting in wasted server resource
utilization. Thus, the VM Packing problem is considered a new variant of the bin-packing
problem in which the items can share space in the bins.

Sindelar et al. [86] were the first to propose and analyze “offline” sharing-aware algo-
rithms for the VM Maximization and VM Packing problems under hierarchical page sharing
models. Our work in this dissertation differs substantially from Sindelar et al. in that we
design algorithms for both online and “offline” settings, consider multiple type VM resource
requests, assume heterogeneous server capacities and operate under a general sharing model.
By focusing on the general sharing model, further memory reclamation can occur when
VMs request similar operating systems with different overlapping subsets of applications or

libraries, which are not captured by hierarchical models.

1.1.4 Our Contributions

In this section, we present the summary of our contributions and the outline of our

dissertation. We summarize below the three research projects that we accomplished as part

www.manharaa.com

13

e Sharing-Aware Virtual Machine Maximization. Service providers face multiple
challenges in hosting an increasing number of virtual machine (VM) instances. Mini-
mizing the utilization of system resources while maximizing the potential for revenue
are among the most common challenges. Recent studies have investigated memory
reclamation techniques focused on virtual technologies, specifically page sharing, for
minimizing the utilization of system resources. By incorporating page sharing into
the challenge of scheduling VMs on physical machines, we formulate the sharing-aware
VM maximization (SAVMM) problem. The SAVMM problem requires determining the
set of VMs that can be instantiated on a given server such that the revenue derived
from hosting the VMs is maximized when VMs consist of only the memory resource.
The SAVMM problem has been shown to be NP-hard. Therefore, we address this
challenge by developing a greedy algorithm for solving this problem. We determine
the approximation ratio of our greedy algorithm and perform extensive experiments
to investigate its performance against other VM allocation algorithms. This is the
first algorithm proposed in the literature which solves the VM maximization problem
under a general sharing model. A paper describing this research was published in the
Proceedings of the 13th IEEE International Symposium on Network Computing and
Applications (NCA’14) [77]. We present this research in Chapter 2.

e Multi-Resource Sharing-Aware Virtual Machine Maximization. Providers
face the challenge of efficiently managing their infrastructure through minimizing re-
source consumption while allocating service requests such that their revenue is max-
imized. Solutions addressing this challenge should consider the sharing of memory
pages among virtual machines (VMs) and the available capacity of each type of re-
quested resources. We provide such solution by designing an approximation algorithm
for solving the multi-resource sharing-aware virtual machine maximization (MSAVMM)
problem. The MSAVMM problem requires determining the set of VMs that can be in-

stantiated on a given server such that the revenue derived from hosting the VMs is

www.manharaa.com

14

maximized. In addition, we model the MSAVMM problem as a multilinear binary
program and optimally solve for maximized revenue, while accounting for page shar-
ing and multiple resource constraints. We determine and analyze the approximability
properties of our proposed greedy algorithm and evaluate it by performing extensive
experiments using Google cluster workload traces. The experimental results show that
under various scenarios, our proposed algorithm generates higher revenue than other
VM allocation algorithms while achieving significant reduction of allocated memory.
This is the first algorithm proposed in the literature which solves the multi-resource
VM maximization problem under a general sharing model. A paper describing this
research was published in the Proceedings of the 3rd IEEE International Conference
on Cloud Engineering (IC2E’15) [79] and an extended version of this paper has been
submitted to IEEE Transactions on Computers for publication. We present this work
in detail in Chapter 3.

e Sharing-Aware Online Algorithms for Virtual Machine Packing in Cloud
Environments. Cloud service providers offer on-demand computing resources to a
large number of users by employing virtualization technologies. A key challenge faced
by cloud service providers is to develop efficient algorithms for assigning Virtual Ma-
chine (VM) instances to server resources such that the number of required servers which
meet the users’ demand is minimized. This challenge has been referred in the literature
as the VM Packing problem, a variant of bin packing that is N"P-hard. The VM Pack-
ing problem differs from other packing problems in that, through virtualization, the
VM instances collocated on the same server can share memory pages which reduces the
amount of cloud resources required to satisfy users’ demand. By focusing on the oppor-
tunity for collocated VMs to virtually share memory through a hypervisor, we design
a family of sharing-aware online algorithms for solving the VM Packing problem. We
also introduce a new multilinear program which captures the essence of sharing mem-

ory and optimally solves the “offline” VM Packing problem. Lastly, we evaluate our

www.manharaa.com

15

sharing-aware online algorithms through extensive experiments and compare them not
only against themselves but also against their sharing-oblivious counterparts. These
algorithms are the first algorithms proposed in the literature which solve the multi-
resource VM packing problem under a general sharing model. The results of this
research were published in Proceedings of the 8th IEEE International Conference on
Cloud Computing (CLOUD’15) [80] and an extended version of this paper has been
submitted to IEEE Transactions on Parallel and Distributed Systems for publication.
We present this work in detail in Chapter 4.
1.2 Organization
The rest of this dissertation is organized as follows. In Chapter 2, we present our
research on the design of a new sharing-aware greedy approximation algorithm for the “offline”
VM Maximization (SAVMM) problem under a general memory sharing model. In Chapter 3,
we present our research on the design of a new multi-resource sharing-aware approximation
algorithm which solves the “offline” multi-resource VM Maximization (MSAVMM) problem
and introduce the optimal multilinear boolean program which models this problem and can
be solved for under a general sharing model. In Chapter 4, we present our research on
the design of a family of multi-resource sharing-aware online algorithms for the online VM
Packing (SA-OVMP) problem and introduce the optimal multilinear boolean program which
models this problem and can be solved for in an “offline” environment under a general sharing

model. In Chapter 5, we describe the possible future directions of our research, and conclude

the dissertation.

www.manharaa.com

16

CHAPTER 2: SINGLE-RESOURCE VM MAXIMIZATION

2.1 Introduction

Virtualization, the process of abstracting a software layer which decouples the phys-
ical hardware from the operating system to deliver greater resource utililization and flex-
ibility [97], serves as a means to increase productivity, lower power consumption, reduce
hardware installation, and overall, minimize the need for increasing the resource capacity to
meet the demand [46]. The application of virtualization technologies is ubiquitous in data
centers around the world which must consider operational costs and guarantee fast delivery
of a variety of profitable services. Specifically, the service provider must ensure the efficiency
of their virtualized service in a competitive environment where fast entry to market, tech-
nology advancement, and service pricing differentials can separate sustaining providers from
antiquated ones. Proprietary virtualization platforms, such as VMWare’s ESX Suite, Mi-
crosoft’s Hyper-V and IBM’s PowerVM, vary in their methods of operations, e.g., full-, para-
and hardware assisted-virtualization, overhead and available number of guest OS hosting ca-
pacities among other features. Open-source alternatives, e.g., Xen, KVM and Linux-VServer,
offer comparable features and operations to the proprietary platforms while being supported
by a large online community. Moreover, open-source virtualization systems such as Xen |[6]
have improved the user experience by implementing safe resource management strategies
without losing performance and/or functionality.

Virtualization has undergone a significant evolution spanning approximately half a
century. Innovations within virtualization technology were initially focused on overcom-
ing the limitations of third-generation computing architectures [35]. Within this context,
virtualization solved the problem of protecting non-privileged references to end users when
multiple end users attempted to access non-privileged instructions through a privileged mode
on the base machine [35]. Invocation of a software layer to access the non-privileged instruc-
tions, known at the time as the privileged software nucleus, suffered from single access to

the non-privileged references limiting the potential for multiple users. Hence, virtualization

www.manharaa.com

17

was born out of these limitations and fulfilled the opportunity to replicate the privileged and
non-privileged instruction sets from the base machine, known as the host, for multiple end
users through a transformed software layer referred to as a hypervisor.

Minimizing resource consumption has been a key driver in the overall advancement of
virtualization technologies. Memory reclamation techniques such as ballooning, hypervisor
swapping, memory compression, and page sharing all attempt to efficiently utilize virtual
machine (VM) memory [98]. Page sharing creates new challenges in the development of
algorithms which allocate VMs onto server resources. The problem of allocating VMs onto a
single server to maximize the revenue, where the revenue is the sum of the revenues derived
from hosting each individual VM, is equivalent to the knapsack problem. The equivalence is
made by associating each VM as an object and by quantifying the number of memory pages
required to host each VM as the weight. Therefore, each VM can be treated as a distinct
object having a weight and a utility given by the revenue derived from hosting it. As a result
of this equivalence, knapsack heuristic algorithms can be successfully applied to solve the
above VM allocation problem when page sharing is not considered. When the sharing of
pages among the VMs is considered, the problem of VM revenue maximization is no longer
equivalent to the knapsack problem. Existing knapsack algorithms will produce less than the
maximum revenue due to not allocating additional VMs on the extraneous server resources
which becomes available when VM pages are shared; resulting in loss of revenue. Therefore,
new algorithms for VM maximization that take into account the sharing of pages among
VMs must be developed.

2.1.1 Our Contribution

We address the problem of sharing-aware VM maximization in a general sharing
model which has as objective finding a subset of VMs that can be hosted by a server with
a given memory capacity such that the total revenue derived from hosting the subset of
VMs is maximized. This problem has been shown to be NP-hard [86]. Therefore, we

design a greedy approximation algorithm based on a new efficiency metric which considers

www.manharaa.com

18

both revenue-seeking and page sharing opportunities in the VM allocation process. We
determine the approximation ratio of our greedy algorithm that solves the sharing-aware
VM maximization problem in the general sharing model, a model that does not assume
any hierarchical or other structured form of sharing. We perform extensive experiments to
evaluate the performance of our greedy algorithm against other VM allocation algorithms.
2.1.2 Related Work

The sharing-aware VM maximization problem has been introduced by Sindelar et
al. [86]. Their main contributions lie in the development of hierarchical sharing models
for VM colocation for both the VM maximization and packing problems. They were the
first to propose and investigate algorithms for solving the sharing-aware VM maximization
problem. Their research is the closest to our research. Our research on the sharing-aware VM
maximization problem focuses on the general sharing model which differs from the shared
hierarchical models investigated by Sindelar et al. [86].

The sharing-aware VM maximation problem has been shown to be NP-hard [86].
Thus, solving it optimally is not feasible and we have to resort to approximation algorithms,
more specifically greedy algorithms. Greedy algorithms have been extensively investigated
for different classical problems such as the knapsack [52], subset-sum, partition [56], as well
as, facility location |91]. Greedy algorithms for VM provisioning and dynamic allocation in
clouds have been investigated by Zaman and Grosu [106] [107] [108|, who designed combi-
natorial auction-based mechanisms. Nejad et al. [69] designed a family of truthful greedy
heuristic mechanisms for dynamic VM provisioning. Other research on greedy heuristics for
VM provisioning focused on minimizing bandwidth-constraint VM placement in data cen-
ters [21], minimizing power consumption [92], federated clouds [62], and physical machine
resourcing in clouds by implementing a mechanism design approach |63]. All these works
focused on designing algorithms for provisioning VMs on multiple physical machines within
a cloud computing system, and for allocation of VMs to users. Our work focuses on devel-

oping algorithms that maximize the revenue derived from hosting VMs on a single physical

www.manharaa.com

19

machine that can be employed in making decisions at the physical machine level and work
in conjunction with higher level resource management algorithms such as the ones discussed
above.

Much of the work on page sharing focused on system development. Bugnion et al. [15]
proposed the transparent page sharing technique for minimizing redundancy and memory
overhead. Commercial systems such as VMWare’s ESX Server [5| enable transparent page
sharing in addition to other memory reclamation techniques |98|. Wood et al. [101]| proposed
Memory Buddies, a sharing-aware VM memory allocation system which uses the VM Ware
ESX Server to identify page sharing opportunities. This is achieved by employing hashing
algorithms that capture the potential for sharing between multiple VMs. The open source
Xen hypervisor [6], has incorporated page sharing in Versions 4.0 and above for Hardware
Virtual Machines (HVM) [76]. Gupta et al. |[41] developed the Difference Engine system
which incorporates sub-page sharing, i.e., sharing pages that are nearly identical, and uses
compression techniques for pages that are not similar, thereby further reducing the overall
memory footprint. Our work focuses on developing sharing-aware VM allocation algorithms
that maximize the revenue obtained from hosting the VMs and take into account page
sharing.

2.1.3 Organization

The rest of the chapter is organized as follows. In Section 2.2, we describe the
sharing-aware VM maximization problem. In Section 2.3, we present the design of our
proposed efficiency metric and our greedy algorithm for the sharing-aware VM maximization
problem. In Section 2.4, we characterize the properties of the proposed greedy algorithm.
In Section 2.5, we evaluate our greedy algorithm against other VM allocation algorithms

by extensive experiments. In Section 2.6, we summarize our results and present possible

directions for future research.

www.manharaa.com

20

2.2 Sharing-Aware VM Maximization

We now introduce the SAVMM (Sharing-Aware Virtual Machine Maximization) prob-
lem as it applies to a service provider resource environment.

We assume that a service provider maintains a server €2, and a library II of all memory
pages required for each service it offers. Thus, the provider can identify and manage all
memory pages required by a VM. We denote by 7;, the i-th memory paj\g%e under the provider’s
management. Library II is comprised of N distinct pages, i.e., IT = U{m}

Each VM instance requires a set of memory pages which Virtl:zilizes a service offered
by the provider. We denote by V;, the VM instance j, by A;, the set of indices of pages
required by Vj;, and by Wf, the ¢-th memory page required by VM V;. We denote by V,
the set of “offline” VM instances that are possible candidates for allocation and hosting on

server). Given this setup, we define the SAVMM problem as follows:
SAVMM problem: Given a set of M “offline” VMs V with each VM V; yielding

a revenue of p;, determine a subset VHE < V of VMs that can be allocated on
the server, considering the memory capacity C' of the server and the sharing of

pages within library II, such that the total revenue, P = Z pj, obtained by
J:VyevH
the provider is maximized.

The SAVMM problem may appear similar to the standard knapsack problem [52], but it is
not the same, because the items (VMs) in the SAVMM problem are shared, while the items
in the standard knapsack problem are not. Server () can host all the VMs in V), if all the
VMs in the set share the same pages and the total number of allocated pages does not exceed
the capacity C' of the server. The notation we use throughout the paper is summarized in
Table 2.1.
2.3 Greedy Approximation Algorithm (G-SAVMM)

In this section, we present the design of our greedy algorithm for solving the SAVMM
problem. The main idea used in the design of our greedy algorithm is to order the candidate

VMs according to a metric which characterizes their potential for revenue and page-sharing

www.manharaa.com

21

Table 2.1: SAVMM Notation.

Expression | Description
II Set of pages under provider’s management.
N Number of memory pages under provider’s management.
Vv Set, of “offline” VMs.
M Number of “offline” VMs.
yH Subset of VMs maximizing provider’s revenue, V¥ c V.
V; Virtual machine j.
s The i-th memory page under provider’s management.
ﬂg The i-th memory page requested by VM V;.
Dj Revenue generated from allocating VM V.
Aj Set of indices of pages requested by VM V.
Q Provider’s server resource.
C Memory capacity of server resource).
k Iteration number.
5;“ Efficiency metric of VM V; at iteration k.
S’;C Number of pages VM V; shares with () at iteration k.

and then allocates them one by one according to the greedy order. The greedy metric and
the greedy order is updated after allocating each VM. This represents an iteration in the
greedy allocation process and will be denoted by k.

We first introduce the proposed metric we use in our greedy algorithm to establish
the greedy order among the candidate VMs. At every iteration k, we order the candidate

VMs, V; € V), according to an efficiency metric, Ef, defined as follows:

gk = by . (2.1)
VK= SF+1

where j is the index corresponding to VM Vj, Kj is the number of pages required by VM V}

(i.e., K; =|A,|), and S]’-g is the number of shared pages between VM V; and the VMs that
are already allocated to the server. The efficiency metric S]’? represents the relative value of
allocating VM V; onto €2 by considering the revenue p; and the potential for sharing pages
characterized by S]’-g , where £ corresponds to the current greedy iteration. Prior to allocating
the first VM onto Q (i.e., at iteration & = 0), the efficiency metric for the “offline” set V
of VMs is calculated using S]Q determined relative to the number of shared pages within all

the VMs in V and not relative to the VMs that are allocated on the server. Once a VM

www.manharaa.com

22

has been selected and allocated (i.e., for all iterations k& > 0) then Ef is calculated using S]’?,
the number of shared pages between VM V; and the VMs that are already allocated onto
the server. As k increases and VMs are allocated onto €2, we have S]k < S]’-“H, that is S]"g
monotonically increases with k, for k£ > 0.

Since SJ’-“ needed to be well defined for all possible cases, we add 1 to the denomi-
nator. The reason for this is that, if VM V; shares all its pages with another VM already
allocated onto €, (i.e., K; = S]’-“,‘v’k), and if we do not consider adding 1 to the denomina-

tor of 5]’-“ = L, then the efficiency metric would produce an indeterminate value.

K, — S
We also reduce the magnitude of the sharing potential in the efficiency metric against the

revenue by applying a square root to the denominator. Revenue has the largest effect when
calculating the efficiency metric and therefore we want to capture as much effect as possible,
while still allowing for the influence of page sharing. Similar metrics to our efficiency metric
have been experimented with in studies focusing on the knapsack problem [52] and have led
to good approximation ratios.

The G-SAVMM algorithm for solving the SAVMM problem are presented in Algo-
rithms 1 and 2. G-SAVMM consists of two phases, executed one after the other: (i) a
pre-processing phase, for k = 0 (Algorithm 1); and, (ii) a greedy allocation phase, for k > 0
(Algorithm 2). The input of G-SAVMM is an “offline” set of VMs V. G-SAVMM determines
the set V7 of VMs allocated onto the server, which is an approximate solution to the SAVMM
problem.

In the pre-processing phase, G-SAVMM scans every VM V; to identify its required
pages, denoted by 7. activePage() (Line 8) is a function that returns 1, if page m is
requested, or returns 0 if page Wf is not requested. For every active page Wf the algorithm
increments the variable K, the number of pages required by VM Vj, and A;, the number
of page m; occurrences among all VMs in V (Lines 6 through 10). After calculating A, the
algorithm determines the page from)V that has the maximum number of requests which is

identified by index 7 (Line 11). If a VM requests page m;, that VM will be placed in the

www.manharaa.com

23

Algorithm 1 G-SAVMM: Phase 1

1: Input: Set of “offline” VM instances (V)
2: {Phase I: Pre-processing}

3:VH

4: A+ 0

5: 14,7, k<0

6: forv=1,...,N do

7 for j=1,...,[V| do

8: if (activePage(n})) then
101 Kj :KJ+1

11: 7 = argmax{A;}

12: for j zll,...,|V| do

13: if (activePage(n?)) then
14: VE = vHu{v;}

15: for all j € V¥ do

16: forv=1,...,N do

17: if (A; > 1) & (activePage(r})) then
18: S =57 +1
19: for all j € V¥ do
: 0 _ by
20: &)=

VG =87 +1

21: j = argmax{é’;)}
J
22:. C=C— Kj
23: V' = v n{v;}
24: V=V\{V;}
25: fori=1,...,N do
26: if (activePage(n?)) then
27: activate(r;)
28: k+1

subset V' (Lines 12 through 14). The algorithm then calculates S, the number of shared
pages among the VMs in V| by identifying the active pages where A; > 1, implying more
than one VM is requesting memory page ¢ (Lines 15 through 18). The efficiency metric
(Eq. 2.1) is then calculated for all VMs in subset V¥ (Lines 19 and 20). Once the VM with
the largest efficiency value, denoted by V3, is identified (Line 21), the server capacity C is
reduced by the number of pages K in V; (Line 22). Following the server capacity reduction,
the subset V' is modified by eliminating all VMs with the exception of VM V; (Line 23) and
then VM V5 is removed from V (Line 24). Following the allocation of VM V3, every requested
page 7rf is identified, and 7; is activated on the server resource through a function we denote

ol Ll Zyl_i}sl

1 27). The activate() function implements the actions that need

www.manharaa.com

24

Algorithm 2 G-SAVMM: Phase I

1: Output: Subset of VM instances maximizing provider revenue (V)
2: {Phase II: Greedy allocation}
3: while (C' > 0) & (]V| > 0) do

4: flag + 1

5: fori=1,...,N do

6: for j=1,...,]V| do

7 if (activePage(n))) & (activePage(;)) then
8: SF=8F4+1

9: for j=1,...,]V| do

10: g = b

VK= S +1

1: j= argmax{gf}
J
12 if O — (K; — 5%) <0 then

13: flag«+ 0

14: V=V\{V;}

15: if (flag) then

16: Vi =vT U5}
17: V=V\{V;}

18: C=C—(K;-5%)
19: fori=1,...,N do
20: if (activePage(n7)) then
21: activate(m;)
22: k=k+1

23: Q « VA

24: exit

to be performed in order to make a page active on the server. The implementation of this
function is platform specific and is out of the scope of this study. The pre-processing phase
is completed with an update of the iteration number k to 1 (Line 28).

The greedy allocation phase of G-SAVMM, (i.e., Algorithm 2 where iteration & > 0),
is similar to the pre-processing phase (Algorithm 1 where iteration k£ = 0). At the beginning
of the greedy phase, a test is performed to ensure that server capacity C' is never exceeded
and that there is at least one VM in V (Line 3). The differences between the two phases
consists on how sharing is checked. In the first phase, the pages in each VM from set V#
are checked against the pages of all other VMs in V¥ (Algorithm 1 Lines 15 through 18),
while in the second phase the pages of each VM from V are checked against the active pages
on server resource €2 (Algorithm 2, Lines 5 through 8). Every time a new VM V] is inserted

e is calculated (Lines 9 and 10) for every k£ > 0. A test is then

www.manharaa.com

25

performed to recalculate the server capacity reduced by number of pages, K, less the shared
pages, S;-“ , in common with the active pages on the server resource €.

If, by allocating VM V; onto €, the capacity is exceeded, V; is removed from the
“offline” set V with no opportunity for inclusion in V¥ (Lines 13 through 14). Else, VM V;
is allocated, the server capacity is reduced, and both V and V¥ are updated accordingly
(Lines 15 through 18). Next, pages within the library IT are updated to active, if they have
not been already, relative to VM V; (Lines 19 through 21) and the iterator k is updated
(Line 22). Lastly, upon exiting the while loop, server € is allocated the subset V¥ of VMs
which represents the solution to the SAVMM problem (Line 23).

In the following, we present an example to show how G-SAVMM works. We consider a
server with memory capacity C' = 10 pages. There are twelve distinct pages in the library II
and four VM candidates for allocation onto the server. Figure 2.1 along with Table 2.2 show
the details of each iteration k of G-SAVMM. The first column in both Figure 2.1 and Table 2.2
corresponds to the pre-processing phase, where a scan occurs for identical, requested pages
within the set of VMs V. In Figure 2.1, page Wf, (t=1,...,12and j =1,...,4), is identified
by a block labeled by 1, if it is requested, and by 0, otherwise. The aggregate value of blocks
per VM corresponds to the total number of requested pages K. The highlighted blocks in
Figure 2.1, correspond to identical pages found between the set of VMs, where A; > 1. The
maximum value in A corresponds to the page that is shared the most among all the pages
in V. The efficiency metric value is calculated for those VMs sharing this most shared page
(i.e., the page with the greatest A;). Based on the values given in Table 2.2, the highest
efficiency metric, 4.772, is associated with V4, and V; is selected for allocation to subset V.

The next iteration of G-SAVMM, corresponding to the first iteration of the greedy
phase, is illustrated in the second column of both Figure 2.1 and Table 2.2. In this iteration, a
scan occurs for identical, requested pages between VMs and the active pages within library I1.
Once the initial VM has been selected for allocation based on the efficiency metric, the

provider activates all pages within IT requested by the selected VM. The active pages are

www.manharaa.com

26

k=0 k=1 k=2 k=3
i - - - - 600 3 0 3.000 600 3 1 3464 600 3 1 3.464
V, 650 5 3 3.753 650 5 2 3.250 - - - - - - - -
Vs 700 5 2 3.500 700 5 1 3131 700 5 2 3.500 - - - -
Vi 675 3 2 4772 - - - - - - - - - - -
Table 2.2: Efficiency Metric Calculation Example.
k=0 k=1 k=2 k=3

Vi [oJo[ZToloToToToTololi]1] Vi [ofofifoJoToToloTolol1]1] Vi [olofifofoloJoTololol1]1] Vi [ofolifoJoloToloTol0T1]1]
Vo [O[1[1]ofoJofiTTT1]0l0l0] Vo [O[i[1]oJo[OTL[1]L]0]0[0]

Vs [oJoJoJoJifL]afofi]1oJo] V5 [ofoJoJoJiJi[iJoli]1oJo] Vs [oJo[oJofi]i[L]0]1]1]0]0]

Vi [1]ofoJofoToTxT1ToToloT0]

T Ty T3 T4 T5 MG M7 Mg M9 MO T Ty T3 T4 W5 M6 M7 Mg 79 TIOM1LTI2 T Ty T3 T4 W5 MG M7 TS M9 TOTLLTI2 Ty Ty T3 T4 T5 M6 M7 Mg M9 MO T2

11 [T T T T TITTI] I [T TR [[[]T 1
Vi [IJ0J0J0J0J0J1]1]0]0]0J0] Vi [1]JOToJOToToTL]1T0l0T0T0] Va [1]ofofofofol1]1i]ololo]0
yH Voo [o]1]1]oJofol1[1]1]o]oJo] Vo [o]1]1]ofOfO[1[1]1]0]0]0
Vs [ofofolol1[1]1]ol1]1]0]0

A [A[1]2]of1]1]3]2[2[1]1]1]

Figure 2.1: G-SAVMM: Execution Example.

identified by blocks with diagonal line filling underneath each page m; from II. The active
pages correspond to all pages from Vj. The highlighted blocks for VMs in iteration k = 1,
correspond to those pages that are identical to the active pages in II. Even though V)
does not share any active pages with the active pages in Il at k = 1, the efficiency metric
is calculated and V; may be considered a candidate for allocation since at some k& > 1,
there may be active pages that are identical to pages in V; in later allocations. The largest
efficiency value is 3.250, which corresponds to V5, and the new server capacity is 6. VM V5,
consists of six pages, where three of them are shared with the active pages in II and therefore
do not have to be accounted for against the capacity. G-SAVMM proceeds until k& = 3, where
the remaining capacity is 1. The total revenue obtained by G-SAVMM is 20.25.
2.4 G-SAVMM Properties

In this section, we determine the approximation ratio of G-SAVMM and characterize
its computational complexity. To develop insight into the properties of G-SAVMM, we design
and analyze a worst-case VM instance as follows. Let VY denote an instance of the SAVMM

problem where VM V: does not share any memory pages with the other VMs in VYW Then,

www.manharaa.com

27

let at least one VM V:. € VYW be comprised of pages which are a complement set of pages
to VM V5. In addition, let the remaining VMs in VYW be comprised of either a subset of
pages in VM V:. or be equivalent to VM V.. In either case, the remaining VMs would be
allocated onto €2 if V5. were to be allocated first since they all share the same memory pages
and would not reduce capacity.

We investigate this instance on a server () with capacity C' such that either VM
Vi or VM V. can be allocated, but not both. If VM V5. is allocated, then all remaining
VMs in VW' \ {V;}, will be allocated as well due to page sharing. Else, VM V; is allocated
and utilizes the server resource capacity enough to not allow any other VM to be allocated
from VW. Our last consideration of the problem instance VW corresponds to revenue. G-
SAVMM is inherently sensitive to revenue values when calculating the efficiency metric. In
the following theorem, we determine the approximation ratio for G-SAVMM based on the
worst case instance YW,
Theorem 2.4.1. The approximation ratio of G-SAVMM 1is M, where M is the number of
VMs.
Proof. Let the revenue obtained from an optimal solution be denoted as P*. Then, let the

optimal set of VMs which generate P* from V" be denoted by V})pp, where P* = Z D;-
3 Vi€VEpr

Let the revenue obtained by G-SAVMM be denoted by P, and the set of VMs which generate

revenue P from VW be denoted by Virp, Vagp C VW, where P = Z pj.- At k=0,
3Vi€V¢Rp

allocate VM V5 onto ; admitting EJQ < 5]9. Then, by Equation 2.1, bi <

VG =S50+ 1

. Since VM V> does not share pages with VMs in v, Sg’ = 0, resulting in

Pj
JE; =S50 +1
J
pj o P
JE; - S0+1 VAR

K;+1
. (2.2)

where

Pj <Dp;
VK =S+ 1

www.manharaa.com

28

establishes the lower bound for p; selected according to our efficiency metric at k = 0. This
implies that for any p; greater than the established lower bound, VM V; will be allocated
first onto Q from VW by G-SAVMM. Considering the server utilization of V; and capacity C,

no other VM allocations can be performed and k stops at 0. Since P = Z pj, the
3Vi€VErp
aggregate revenue is expressed as P = p;.

Suppose that through an exhaustive search, the optimal value P*, is calculated
whereby VM V:. is allocated first onto €2 at £ = 0. Since every remaining VM in YWois
comprised of a subset of pages in VM V., not including VM V2, then the exhaustive search
allocates all remaining VMs onto €2 from k£ = 1 to at most kK = M — 1. Thus, the optimal

revenue expressed as P* = Z p,; implies P* = Z p;. In order to determine
3V, €EVEpr JV;EVWA{V;}
the approximation ratio for this instance of SAVMM, we must show that P* < Pa, where a

is the multiplicative factor that will give the approximation ratio of G-SAVMM. Therefore,

* i .
P Z]:Vjevg/PTpJ

— e = (2.3)
P Zj:VjEVgRD D;
_ Ziterniy P 2.4
p;
By substituting p; from Eq. 2.2, we further determine
Z 1/Kj—sj’?qtlp
P* FV;EVW\{V;} T K +1 L
S ’ ’ (2.5)

P;
Z VK= SF+1
ey Vv K+l

v
1
= —— > K - SE+1 (2.7)

I pvevWay;)

For k> 0and V VM V; € VW \ {V;}, S¥ will be at least 1 when VM V. is allocated

first onto 2. Every remaining VM in VW\{Vj.}, will be allocated onto €2, where the remaining

ol Ll Zyl_i}sl

www.manharaa.com

29

VMs may only consist of a single shared page with V5. in the worst case. Then,

p* 1
< Y VK -1+1 (2.8)
VAR FV;EVWA{V;}

1
—— > VK] (2.9)
VI mw

Following the allocation of VM V., we consider M — 1 maximum number of VMs

left to allocate in the optimal solution. Since VM V. exists and is the complement page set
to V3, then for N pages, 1 < K; < N — 1. In addition, since there exists at least 1 shared
page index between A; and As. Vj: V; € V' \ {V;}, then for K; =1 we have

(M-1)v1 M-1
K,+1 2

J

P*
= < <M-1<M (2.10)

*
Therefore, 2 is bounded by o = M, which results in an approximation ratio of M

for the G-SAVMM algorithm. !

We now investigate the time complexity of G-SAVMM. The running time is dominated
by the second phase, the greedy phase. The while-loop (Algorithm 2 Line 3) may execute
a maximum of M — 1 iterations since one VM has already been inserted into V. Within
the while-loop, the running time is dominated by the search and calculation of shared pages
between the VMs in V and the active pages on Q (Algorithm 2 Lines 5 through 8). The
search and calculation are executed a maximum of M —1 times, corresponding to the possible
number of VMs at k = 1, by the number of active pages to search on €2, thus the running
time is O(N(M — 1)). Then, the running time for the entire greedy phase is O(N(M — 1)?).
Thus, G-SAVMM has an asymptotic running time of O(NM?) which is linear in the total
number of pages and quadratic in the total number of VMs in the set of “offline” VMs.
2.5 Experimental Results.

In this section, we perform extensive experiments investigating the performance of

G-SAVMM against other VM allocation algorithms considering their obtained revenue and

www.manharaa.com

30

2.5.1 Experimental Setup

We perform our experiments on a 2.4 GHz Intel Core® i7-3630 QM CPU 64-bit
system. All simulations are implemented in C++ and are compiled with GCC Version 4.9.0.
Our evaluation of G-SAVMM consists of comparing its performance against two other VM
allocation algorithms: (i) Highest Revenue (HR-Oblivious); and, (ii) Maximum Shared Pages
(MS-Sharing). The first allocation algorithm, HR-Oblivious, is a greedy algorithm which
allocates VMs in decreasing order of their revenue and is page sharing oblivious. The second
allocation algorithm, MS-Sharing, is a greedy algorithm which allocates VMs in decreasing
order of their number of shared pages. The page sharing consideration in MS-Sharing mirrors
that of G-SAVMM, but it does not take into account the revenue.

Our environment assumes page sharing within each simulation we evaluate. We con-
sider the degree of sharing among the VMs and categorize the SAVMM instances into four
categories, called sharing stratifications: (i) Low-Share (no greater than 20% of the active
pages on the server are shared with VMs); (ii) Mid-Share (no greater than 50% of the active
pages on the server are shared with VMs); (iii) High-Share (no greater than 80% of the
active pages on the server are shared with VMs); and, (iv) Full-Share (approx. all active
pages on the server are shared with VMs). Our experiments consist of 1000 simulations per
sharing stratification. In our simulations, each sharing stratification is defined within the
following ranges: (i) 15%—20% for Low-Share; (ii) 38%—50% for Mid-Share; (iii) 70%—80%
for High-Share; and, (iv) 92%—99% for Full-Share.

Each instance of SAVMM considered in the simulation consists of 10 VMs. Each
VM is assigned a revenue value randomly ranging from $1 to $20. The number of pages
is also generated randomly with a maximum of 1000 pages possible per VM. Our server
capacity C' is fixed at 60% of the total number of pages for each simulation. Based on our

experiments, operating at 60% capacity provides enough resources to accommodate a wide

variety of simulations.

www.manharaa.com

31

Our criterion for identifying the best performing algorithm is based on the calculation
of revenue ratios. In our experiments, we execute the three greedy algorithms HR-Oblivious,
MS-Sharing and G-SAVMM on instances of the SAVMM problem. The set of VMs therein
will vary in their revenue generated from being hosted according to the range specified in the
previous paragraph. Comparing then aggregating the actual values of the revenue generated
by each of these greedy algorithms over a number of simulations is artificial since it may
mislead the attainment of a defined value of revenue. Instead, we compare the revenues
generated by each greedy algorithm over the maximum revenue generated in that instance
and aggregate those ratios for a specific number of simulations. For example, suppose after
simulating an instance of the SAVMM problem, HR-Oblivious generates a revenue value of
100, MS-Shaing generates a revenue value of 200 and G-SAVMM generates a revenue value of

250. Then, the maximum revenue generated in that instance would be 250. The calculated

200
revenue ratios would be .4, or 250’ for HR-Oblivious, .8, or 250’ for MS-Sharing and 1,
250
or 250’ for G-SAVMM. The revenue ratios indicate each greedy algorithm’s proximity to

the maximum revenue attained in that instance. These revenue ratios will never be larger
than 1 for any of the algorithms in any instance. By aggregating these ratios over 1000
simulations, we identify the best performing algorithm as the one with the highest revenue
ratio aggregate. The revenue ratio aggregate for each algorithm over the course of 1000
simulations will never be larger than 1000. In addition, these 1000 simulations are performed
for each sharing stratification to determine the best performing algorithm under the various
sharing scenarios.
2.5.2 Analysis of Results

We now compare the performance of G-SAVMM against both HR-Oblivious and MS-
Sharing algorithms. In Figure 2.2, we plot the aggregate revenue ratios of all three algorithms
under different sharing stratifications. For sharing stratifications Low-Share, Mid-Share and
High-Share, G-SAVMM outperforms both HR-Oblivious and MS-Sharing algorithms. In Low-

Share, G-SAVMM resulted in either the revenue maximum over or equal to the revenues

www.manharaa.com

32

1100 1 1 1 1
HR-Oblivious | E—
G-SAVMM []
MS-Sharing |
1000 -~
L 900 A
©
o
o
(@)]
<
o 800 A
<
o
I3
a 700 S
600
500

Low-Share Mid-Share High-Share Full-Share
Sharing Stratification

Figure 2.2: G-SAVMM: Revenue Ratios vs. Sharing Stratifications.

obtained using HR-Oblivious and MS-Sharing, in 852 of the 1000 simulations. In Mid-Share,
G-SAVMM resulted in either the revenue maximum over or equal to the revenues obtained
using HR-Oblivious and MS-Sharing in 875 of the 1000 simulations. In High-Share, G-SAVMM
resulted in either the revenue maximum over or equal to the revenues obtained using HR-
Oblivious and MS-Sharing in 816 of the 1000 simulations. In the Low-Share and Mid-Share
stratifications, our experiments have shown that HR-Oblivious outperforms MS-Sharing. In
the High-Share and Full-Share stratifications, our experiments have shown that MS-Sharing
outperforms HR-Oblivious. As the sharing potential in the stratification increases, MS-Sharing
generates an increased revenue since more VMs may be allocated. In the Full-Share strati-
fication, G-SAVMM and MS-Sharing generate the same revenue resulting in a revenue max-
imum in 1000 out of 1000 simulations. Based on our results, G-SAVMM attains a revenue

ratiopaggregatesofim(i)p993:2759 for Low-Share; (ii) 994.0514 for Mid-Share; (iii) 992.9242

www.manaraa.com

33

HR-Oblivious /3
1000 4 G:SAVMM —
MS-Sharing |
)
o
g 800 A
(@)}
(@)}
<
i)
<
X 600 -
2
Q
(9]
[oX
@
o
o 400
£
c
'S
S
i
200
O .

Low-Share Mid-Share High-Share Full-Share
Sharing Stratification

Figure 2.3: G-SAVMM: Capacity Ratios vs. Sharing Stratifications.

for High-Share; and, (iv) 1000 for Full-Share. When a simulation contains VMs with full-
sharing potential, G-SAVMM or MS-Sharing returns the same result. When the simulated
instance consists of VMs with less opportunity to share pages, G-SAVMM is the preferred
algorithm with respect to revenue maximization. Therefore, according to our experiments,
G-SAVMM should be the chosen algorithm for solving SAVMM. In Figure 2.3, we plot the
aggregate remaining memory capacity ratios, after the VMs have been allocated, for all three
algorithms under different sharing stratifications. We have shown the efficacy of G-SAVMM
for revenue maximization now we show that from the point of view of preserving resources,
G-SAVMM also performs well. The remaining capacities are slightly larger for HR-Oblivious
in the Low-Share and are larger for MS-Sharing in Mid-Share and High-Share. The signifi-
cant differences between these algorithms occur in the Full-Share stratification. MS-Sharing

aused capacity with G-SAVMM also experiencing a higher unused

www.manharaa.com

34

capacity; albeit not as significant as MS-Sharing, yet well above HR-Oblivious. Therefore,
choosing G-SAVMM as the algorithm for solving SAVMM leads to a considerable saving of
memory which can be utilized for other purposes.
2.6 Summary

We designed a sharing-aware greedy approximation algorithm (G-SAVMM) for solv-
ing the sharing-aware VM maximization problem. We showed that G-SAVMM is a M-
approximation algorithm, where M is the number of VM instances. The experimental results

show that G-SAVMM outperforms two other VM allocation algorithms in terms of generated

revenue.

www.manharaa.com

35

CHAPTER 3: MULTI-RESOURCE VM MAXIMIZATION

3.1 Introduction

Virtualization embodies all the positive characteristics of a technology that minimizes
administrative effort, energy consumption, and infrastructure investment. The process of vir-
tualizing applications, servers, networks, etc., as a service benefits consumers and providers
alike. Consumers enjoy the fulfillment of their requests and are protected, in a sense, by Ser-
vice Level Agreements (SLAs) that define Quality of Service (QoS) guarantees. Providers,
on the other hand, must ensure that essential resources are thoroughly available and that
they generate the highest revenue from providing the services.

Cloud service providers face many challenges concerning the availability of resources
to host user specified services. One of the major challenges is how to allocate and manage
resources in large scale systems such that the revenue is maximized and the user requests
are satisfied. To meet these challenges, several platforms and systems have been developed
and presented in the research literature. An example of such a platform is Mesos [43],
which allows sharing of cluster resources among various cluster computing frameworks. A
more recent example is Borg [96], Google’s large scale cluster management system, which
schedules requests on what may well be the largest service infrastructure in the world |67].
While these systems represent significant contributions to resource management in large scale
systems, both works identify extensions in search of greater efficiency, that is, leveraging
more information about resource offerings in the case of Mesos and in the case of Google’s
next-generation container management system, Kubernetes [39].

Resource-based sharing, which lies at the heart of virtualization, is a way for service
providers to alleviate scarcity, improve utilization and make available an enormous amount
of services to users. In this chapter, we focus our attention on exploiting the benefits of
sharing memory pages among co-located VMs. Sharing at the level of memory pages, page
sharing, is a standard memory reclamation technique where the hypervisor removes iden-

tical memory pages between the co-located VMs and manages a single page to be shared

www.manharaa.com

36

between them. Hypervisors use an assortment of memory reclamation techniques, e.g., bal-
looning, compression, swapping, etc., to conserve the memory resource and implement them
in different ways. For instance, the Xen hypervisor [6] manages the sharing of pages at the
application level, whereas IBM’s PowerVM [23| manages page sharing at the logical partition
level. If service providers can adapt their pricing for services on the utilization and sharing
of resources, then the potential for higher revenues could be increased due to attracting more
consumers to portions of resources which have been freed by sharing.

In this chapter, we address the multi-resource sharing-aware virtual machine maxi-
mization (MSAVMM) problem. The MSAVMM problem requires determining the set of VMs
that can be instantiated on a given server such that the revenue derived from hosting the
VMs is maximized. The solution to this problem takes into account the sharing of memory
pages among the VMs and the available capacity of each type of resource requested by the
VMs. If memory sharing is not considered, a cloud provider could employ classical multidi-
mensional knapsack algorithms (with the knapsack as the server and the items as the VMs)
to solve the virtual machine maximization problem. The classical knapsack algorithms |52]
assume that items are distinct and are characterized by dimension and weight. When the
items are treated as non-distinct and can be shared, as is the case for MSAVMM, the classic
knapsack algorithms produce allocations which generate less revenue than specially designed
sharing-aware algorithms. Our focus is on designing such sharing-aware algorithms that
solve MSAVMM.

3.1.1 Our Contribution

We formulate MSAVMM as a multilinear binary program and optimally solve for max-
imized revenue in the case of small instances. Since solving the multilinear program is not
feasible for large scale instances of MSAVMM, we propose and design a greedy approximation
algorithm for solving MSAVMM. The algorithm allocates a set of requested VM instances to
the server resource such that the revenue of the provider is maximized while the sharing of

memory pages and the constraints on the capacity of each type of resource are taken into

www.manharaa.com

37

account. The greedy order employed by the algorithm is based on an efficiency metric that
considers multiple types of resources and the page sharing potential among the VMs. We
analyze the properties of our proposed greedy algorithm and determine its approximation
ratio. Lastly, we investigate the performance of our proposed algorithm by comparing it with
the performance of several other greedy allocation algorithms on Google cluster workload
traces [83]. To the best of our knowledge, no multi-resource sharing-aware greedy approx-
imation algorithms for solving the MSAVMM problem have been proposed in the research
literature to date.
3.1.2 Related Work

Previous research on the VM resource allocation problem has focused on the opti-
mization of various utility functions under multiple VM resource constraints and on the
design of incentive-based mechanisms for VM allocation. Wei et al. [100] investigated phys-
ical machine (PM) provisioning for Infrastructure as a Service (IaaS) clouds and argued
that service providers should offer flexible resource combinations when hosting VMs. Their
research also suggested that the use of a single resource-type provisioning scheme by cloud
providers when multiple resource types are requested, leads to PM over-provisioning and
limits resource utilization. Therefore, the authors have developed a dynamic multiple re-
source provisioning approach which optimizes resource utilization for laaS cloud providers.
Minarolli and Freisleben |66] investigated the allocation of VMs requesting multiple resource
types in [aaS clouds. Their proposal employs a utility function which maximizes the qual-
ity of service (QoS) and the service provider’s revenue through resource managers running
on PMs. The use of auction-based mechanisms for the VM allocation problem considering
multiple resource types has been investigated by several researchers. Zaman and Grosu [107]
designed combinatorial auction-based greedy mechanisms for VM provisioning and allocation
in clouds. Nejad et al. [70] proposed a family of truthful greedy heuristic mechanisms for
dynamic VM provisioning for the auction-based model. Mashayekhy et al. |64] formulated

a PTAS mechanism for the provisioning and allocation of heterogeneous cloud resources.

www.manharaa.com

38

While these allocation methods do take multiple resources into consideration, they do not
take into account the benefits of page sharing in their design and implementation.

Dominant Resource Fairness (DRF) has received significant attention in establishing
fair resource allocation when multiple resources are requested. Ghodsi et al. |33] were the
first to propose the Dominant Resource Fairness (DRF) allocation policy for multiple types of
resources in clusters. DRF policy satisfies a number of desired properties including strategy-
proofness, envy-freeness, and Pareto-efficiency. It also incentivizes the sharing of resources
by guaranteeing that no request is better off if the resources are equally partitioned among
the set of users’ requests. Dolev et al. [27| considered an alternative fairness criterion for
allocation of multiple resources and proved that fairness is guaranteed by any combination
of user requests under multiple bottlenecks. Wang et al. [99] extended the DRF policy
concept to multiple heterogeneous server resources in a cloud environment. Wong et al. [47]
investigated the fairness-efficiency trade-off of allocating multiple resources in data-centers.
Even though the above works considered multiple resource types, they did not consider page
sharing when deciding the allocation.

The majority of research on page sharing focused on developing page sharing sys-
tems. Bugnion et al. [15] proposed the transparent page sharing technique for minimizing
redundancy and memory overhead. Wood et al. [101] proposed Memory Buddies, a sharing-
aware VM memory allocation system which uses the VMWare ESX Server to identify page
sharing opportunities. This is achieved by employing hashing algorithms that capture the
potential for sharing between multiple VMs. Commercial systems such as VMWare’s ESX
Server 5| enable transparent page sharing in addition to other memory reclamation tech-
niques [98]. The open source Xen hypervisor [6], has incorporated page sharing in Versions
4.0 and above for Hardware Virtual Machines (HVM) [76]. Gupta et al. [41] developed the
Difference Engine system which incorporates sub-page sharing, i.e., sharing pages that are
nearly identical, and uses compression techniques for pages that are not similar, thereby

further reducing the overall memory footprint. Pan et al. [71] proposed the use of a memory

www.manharaa.com

39

de-duplication engine in coordination with a hypervisor to promote the sharing of memory
among the co-located VMs. Our work focuses on developing sharing-aware VM allocation
algorithms that maximize the revenue obtained from hosting the VMs and take into account
page sharing.

To the best of our knowledge, the existing research on the design and analysis of
sharing-aware VM allocation algorithms consists of only one paper by Sindelar et al. [86],
who introduced and investigated VM packing and maximization problems under hierarchi-
cal sharing models. They developed several algorithms to solve these problems assuming
hierarchical sharing models. Our research on the sharing-aware VM maximization problem
focuses on the general sharing model which differs from Sindelar et al. [86]. By focusing on
the general sharing model, further memory reclamation can occur when VMs request similar
operating systems with different overlapping subsets of applications or libraries, which are
not captured by hierarchical models. In Chapter 2 and our previous paper [78|, we developed
a greedy algorithm for solving the sharing-aware VM maximization problem where only one
type of resource, the memory, is considered. Moreover, both contributions |86 and |78| do
not consider the allocation of multiple types of resources.

3.1.3 Organization

The rest of this chapter is organized as follows. In Section 3.2, we define the multi-
resource sharing-aware VM maximization problem. In Section 3.3, we formulate MSAVMM
problem as a binary multilinear program. In Section 3.4, we present our proposed greedy
algorithm for solving the MSAVMM problem. In Section 3.5, we determine the approxima-
tion ratio of our proposed greedy algorithm. In Section 3.6, we describe the experimental
setup and investigate the performance of our proposed algorithm by performing extensive
experiments on Google Cluster Usage trace data [83]. In Section 3.7, we summarize our

results and present directions for future research.

www.manharaa.com

40

3.2 Multi-Resource Sharing-Aware VM Maximization

We now present the MSAVMM (Multi-resource Sharing-Aware Virtual Machine
Maximization) problem from the perspective of a service provider.

The allocation of multiple VMs that share a PM resource is controlled by the hyper-
visor software layer maintained by the service provider. The process of memory reclamation
between the physical resource and the requesting VMs is also managed by the hypervisor.
Moreover, the hypervisor is the only agent that has the ability to translate pages from PM
to VM and/or VM to VM. We assume the use of an external mechanism, outside of, but in
coordination with the hypervisor, capable of managing a library of memory pages, denoted
by II, required for the services offered by the provider. The use of an external mechanism,
outside of, but in coordination with the hypervisor was proposed by Pan et. al [71]. Such an
approach allows for service flexibility and minimizes any performance degradation resulting
from taxing the hypervisor more than it is necessary. The mechanism runs concurrently
with the hypervisor on the PM server (2 that provides the resources. The instantiation of a
VM implementing a virtualized service offered by the provider, requires a given number of
memory pages. In order to identify the memory pages within II, we denote by 7', the i-th

N
memory page in II. We assume that [T manages a finite number IV of pages, i.e., II = U{W'L}

The notation used in this chapter is presented in Table 3.3. =

We assume that there is a set V of M VMs that are candidates for instantiation.
We call this set, the set of "offline" VMs. We denote by Vj, the VM instance j, where
j=1...,M, and V; € V, and by 7r§, the ¢-th memory page required by VM V;. The
provider allocates and instantiates a subset of VMs, denoted by V¥, onto Q. The allocation
should be determined based on how efficient in terms of revenue it is to allocate a VM
given the availability of PM resources. In general, our model can handle any number of
resource types, but for simplicity of presentation and the relevance to practical settings,

we specifically consider three main types of resources: (i) memory, where the PM memory

ii) virtual CPUs (vCPUs), where the PM vCPU capacity is

—

www.manharaa.com

41

Table 3.3: MSAVMM Notation.

Expression | Description

Library of pages under provider’s management.

Number of memory pages under provider’s management.
Virtual machine j.

Set of "offline" VMs.

Number of "offline" VMs.

Subset of VMs maximizing provider’s revenue, V¥ c V.
The i-th memory page under provider’s management.
Number of pages VM V; shares at iteration k.

Shared page counter among M VMs for the i-th page.
The i-th memory page requested by VM V.

revenue generated from allocating VM V.

Provider’s PM server resource.

Memory capacity (RAM) of PM server resource 2 (GB).

Qoza sl tgesza

c vCPU capacity of PM server resource) (cores).
c® Storage capacity of PM server resource {2 (GB).
R Subset of PM resource types u and s, R = {u, s}.
qa;" Requested amount of memory (RAM) by V; (GB).
qj Requested number of vCPU by V; (cores).
a Requested amount of storage by V; (GB).
EJ’C Efficiency metric of VM V; at iteration k.

PV) Power set of the set of “offline” virtual machines V.
z Index of “offline” virtual machines in P(V).

denoted by C*; and (iii) storage, where the PM storage capacity is denoted by C°. We
denote by R the subset of resource types composed of vCPUs (type denoted by u) and
storage (type denoted by s), that is, R = {u,s}. We do not include the memory resource
type in R since it is treated differently, due to page sharing. Each VM V; requires a given
amount of each resource type as follows: ¢;" amount of memory, ¢; amount of vCPUs, and
q; amount of storage. We assume that the requests for resources from any single VM can be
satisfied by the provider (i.e., ¢i" < C™, ¢; < C", and ¢; < C*, for any j =1,..., M). We
now introduce the MSAVMM problem as follows:

MSAVMM problem: Given a set of M "offline" VMs V, with each VM V; yielding

a revenue p; upon allocation of the required amount of memory, ¢;*, number of

vCPUs, ¢}, and amount of storage, ¢;, determine a subset VH <V of VMs that

can be allocated onto server €2, considering the PM memory capacity C™, the

available number of vCPUs, C'*, the PM storage capacity, C*, and the sharing

www.manharaa.com

42

of memory pages, such that the total revenue, P = Z pj, obtained by the
j:v;eVH
provider is maximized.

The formulation of MSAVMM is novel in that it considers the allocation of multiple types
of resources and, most importantly, it considers page sharing for the memory resource. If
the formulation disregarded page sharing, then the problem could have been reduced to
the standard multi-dimensional knapsack problem [52|, for which the VMs are the items
and the PM is the multi-dimensional knapsack (with dimensions given by the capacities of
the multiple resource types). Existing algorithms for solving the multi-dimensional knapsack
problem would not be appropriate for solving MSAVMM, leading to revenue loses. MSAVMM
represents a new class of multidimensional-knapsack problems with overlapping items.

By considering page sharing, more VMs may be allocated to utilize more efficiently
the memory resource. Therefore, the service provider may increase its potential for revenue
as a result of implementing sharing-aware based allocations. To the best of our knowledge,
no algorithms for solving the multi-resource sharing-aware VM allocation problem have been
proposed in the literature.

3.3 Binary Multilinear Program Formulation

In this section, we propose a multilinear programming formulation of MSAVMM. The
objective of the service provider is to instantiate a number of VMs which maximizes the
revenue relative to the amount of available resources. Therefore, we formulate the MSAVMM

problem as a binary multilinear program (BMP), called BMP-MSAVMM, as follows:

maximize: P = Z DjT; (3.1)
j:V; eV
subject to: Z gGr; <C", VreR (3.2)
j:V;eV
S ()06 T < O (3.3)
ZeP(V) keZ
z; € {0, 1}, Vj: Ve (3.4)

www.manharaa.com

43

The solution to this problem is a boolean decision vector x € {0,1}", where z;
corresponds to service provider’s decision to instantiate Vj, i.e., ; = 1, if V} is instantiated,
and z; = 0, otherwise. The objective function in Equation (3.1) corresponds to revenue, P,
aggregated from the subset of instantiated VMs. The constraint in Equation (3.2) ensures
that the subset of instantiated VMs do not request more resources than the service provider
has available, that is, C", where r = u for vCPUs, and r = s for storage. The constraint in
Equation (3.3) ensures that the subset of instantiated VMs does not request more memory
than the service provider has available and takes into account the reclaimed memory through
page sharing. Lastly, the constraint in Equation (3.4) expresses the fact that z;’s are binary
decision variables.

The constraint in Equation (3.3) requires a more detailed explanation since it captures
the sharing of memory pages. To explain it, we consider an example in which four VMs
request instantiation onto the server, where the requested resources are given in the second

12 16)

column of Table 3.4. We consider that only a total of 16 different pages (7, 7, ..., 7

are going to be requested by these VMs.

Vil<g' & ¢ pi>|ZI=1]Z|=2||Z|=3]| |Z|=4

Vi < 4, 1, 2, 0.95 > o1:4 O12:3 | 0103 : 2 | 01934 ¢ 1
V5 <5, 1,2 1.05> 09 :9 013 :3 | 0124 : 2
‘/3 <7, 2, 2, 1.35 > o3 7 014 :3 | 0134 : 2
Vil <14, 4,2, 180> | 04:14 | 093:2 | 0934 :1
0924 - 4
034 - 5

Table 3.4: VM Characteristics and Sharing Relationships.

The pages requested by each of the four VMs are given in Figure 3.1. For example
V1 requests a total of 4 pages (pages marked with hatched boxes in Figure 3.1, the row
corresponding to V). The vertical bold lines connecting the hatched boxes in the figure

2

mark the pages that are shared. For example, page 7~ is required by Vi, V5 and V3, and

www.manharaa.com

44

0 [eTeTeTeTeTo o e o o s s s o 9 s
Vit QY N Q)

‘/21(131\\(1&%% Qk@ QK

visay | | PO | o | o o

vicar [POPSTETOTOTE TS [OPS RS TS

Figure 3.1: Page Sharing Among VMs.

thus, the hatched boxes corresponding to it in the three VMs are connected with a vertical
bold line indicating that 7% is shared among the three VMs.

We now show how the sharing parameter oz used in constraint (4.7) is determined.
We denote by P(V) the power set of the set V of available VMs and by Z an element of
the power set V. The sharing parameter represents the number of shared pages among the
VMs in set Z. For example for T = {1,2,3}, 0193 = 2, that is, two pages, 7> and 7°, are
shared among the three VMs considered. We calculate the sharing parameter o7 for all the
sets Z of the power set P()) and organize them by the cardinality of Z in Table 3.4. When
|Z| = 1, the sharing parameter o7 represents the amount of memory resource ¢j" in number
of pages requested by Vj, that is, 0; = ¢;*. By combining the set of values representing the
number of shared pages and the number of pages required by each VM, we can deduce the
number of unique pages, i.e., those pages which are required to instantiate a subset of VMs,
are managed only once in I, and are available to be shared among requesting VMs. To
calculate the number of unique pages in Equation (3.3) we need to introduce an adjustment
parameter, (—1)(‘1‘“), which adjusts the calculation of the number of unique pages according
to the cardinality of Z. By referencing the data in Table 3.4, we can calculate how many

unique pages are required in order to instantiate the entire set of VMs and compare this

www.manaraa.com

45

value to the available service provider’s memory capacity C" as follows:

(+1)(01 + 09 + 03+ 04) +

(=1)(012 + 013 + 014 + 023 + 024 + 034) + (3.5)

(+1)(0123 + 0124 + T134 + 0934) + (—1)(01234) < C™

By substituting the values for o7 from Table 3.4 and performing the calculation above
in Equation 3.5, we arrive at 16 unique pages which is consistent with the number of grey
boxes, i.e., those pages required to be managed by II in order to instantiate all four VMs,
from Figure 3.1. In order for the service provider to support the memory requests of all
four VMs, they would have to have an available memory capacity which can support the
management of at least 16 pages. In most cases, only a subset of the VMs may be chosen for
instantiation based on the service provider’s memory resource. Therefore, the constraint in
Equation (3.3) consists of the product of boolean decision variables, z, where k is an index
corresponding to any VM within the VM subset combination Z, on the sharing parameter
oz, and the unique page adjustment parameter (—1)Z+D.

In order to solve BMP-MSAVMM, we use the AMPL [30] mathematical programming
framework and an open-source solver, Couenne [8], capable of producing exact solutions for
BMP-MSAVMM. Couenne employs a branch & bound algorithm for solving mixed integer
nonlinear programs; which lends to our multilinear binary formulation. The constraint in
Equation (3.3) of BMP-MSAVMM makes it a mixed integer nonlinear program. We submit
our model, data, and preference for solver to NEOS [24], an internet-based optimization
service, which solves BMP-MSAVMM.

We solved the BMP-MSAVMM instance in the example given in Table 3.4, and the
solution consists of instantiating V;, V5 and Vj, generating $4.05 as the optimal revenue.
The execution takes approximately 9.6 milliseconds. The execution time increases dramat-
ically for larger instances, for example for an instance of MSAVMM with 20 VMs and 256
pages, the execution time exceeds 20 minutes. These solvers can only be used for solving

for solving large instances of MSAVMM, we need to rely on

www.manharaa.com

46

approximation algorithms. BMP-MSAVMM problem is a new and more complex variant of
the multidimensional knapsack problem which is strongly A'P-hard [52]. Therefore, we infer
that BMP-MSAVMM is also strongly NP-hard.

3.4 Greedy Approximation Algorithm (G-MSAVMM)

In this section, we present the design of our greedy algorithm for solving the MSAVMM
problem. Our algorithm orders the candidate VMs according to an efficiency metric which
considers the revenue of allocating the VMs, the capacity of the multiple resource types
(e.g., memory, vCPU and storage), and the potential for page sharing. Since the focus is
on maximizing the revenue of the service provider, the metric should take into account the
revenue as the main factor. After each allocation, the efficiency metric is recalculated and
the greedy order is adjusted accordingly. Each allocation represents an iteration (denoted
by k) of the greedy allocation process. The efficiency metric, Ef, corresponding to VM V;

at iteration k is defined as follows:

EF = by (3.6)
J Z @ N gy —sh+1
reR o o

The efficiency metric E]k represents the relative value of allocating VM V; onto
by considering the revenue, the number of resource types requested, and the potential for
sharing pages. More specifically, the efficiency metric represents the unit price per normalized
resource.

The initial step in the allocation process, at iteration k = 0, selects the first VM to be
allocated onto €2, based on the order induced by the efficiency metric. More specifically, it
allocates first the VM that has the maximum value for the efficiency metric. The efficiency
metric at k& = 0 for all V; € V depends on the number of shared pages, sf, relative to all
V; € V, since no other VMs have been allocated yet to share pages. At later iterations (i.e.,
k > 0) the efficiency metric considers the potential for sharing among the candidate VM and

the VMs that are currently scheduled to be allocated (i.e., VMs that are currently in V).

www.manharaa.com

47

Algorithm 3 G-MSAVMM: Phase [

: Input: Set of offline VM instances (V)
{Phase I: Initial VM Allocation based on the potential for page sharing in V}
[A] <0
V0
1,7 <0
fori=1,...,N do
forallj: V; €V do
if (activePage(Wj)) then
A'=A"+1
i = argmax{A’}

H
<

11: for alllj : V;€Vdo
12: if (activePage(W;-)) then
13: VA =vH y{v;}
14: fori=1,...,N do
15: forall j: V; e Vi do ,
16: if (A" > 1) and (activePage(r;)) then
17: s(;- = s? +1
18: for allj: V; € V¥ do
. 0 _ bj
19: EY= T
DD R
reER

20: j = argmax{E?}
J
21: VI ={V;}
22: V=V\{V;}
23: [C™, CY, C*l = [C™, €Y, C°] - ¢, 4, ¢]]
24: fori=1,...,N do
25: if (activePage(ﬂ'g)) then
26: allocatePage (")
27: k+1

An interesting property of our efficiency metric is that as k increases, sf < sf“, that is, the
potential for sharing monotonically increases with £, for any £ > 0.

We now describe the proposed algorithm, called G-MSAVMM, for solving the MSAVMM
problem. The algorithm is presented in phases by Algorithm 3 and Algorithm 4. G-MSAVMM
consists of two phases distinguished by how the potential for sharing is determined. In the
first phase (Algorithm 3), the potential for page sharing is determined considering the shar-
ing among all the VMs in the offline set of VMs, V. In the second phase (Algorithm 4), the
potential for sharing is determined by considering the sharing among the candidate VM and

the VMs that are currently scheduled to be allocated onto €.

www.manharaa.com

48

The input to G-MSAVMM in Algorithm 3 is a set of “offline” VMs, V. First, G-
MSAVMM initializes the shared page counter array, A, (Line 3), the subset of allocated VMs,
VH (Line 4), and the indices used for selecting VMs (Line 5). The shared page counter array
A is used to determine the potential for sharing pages among the VMs in V), that is, entry
A" is the number of occurrences of page 7' requested by the VMs in V. The pages requested
by the VMs in V are identified and A is updated accordingly (Lines 6 through 9). Function,
activePage() (Line 8), determines whether memory page m from VM V; is requested. If 7
is requested, then activePage() returns 1, otherwise it returns 0. The activePage() function
uses information from a pre-processing stage in which the cloud provider uses a set of staging
PMs to instantiate the requested VMs and determine their memory fingerprints. The cloud
provider could implement a memory fingerprinting technique similar to the one presented by
Wood et al. [101|. Then, the i-th memory page that is requested the most, is selected, and
every V; which requests the i-th memory page is included in the VM subset VH (Lines 10
through 13). The next task is to calculate the number of shared pages for each V; € V. If
there are memory pages shared by at least two VMs, (i.e., Al > 1), and V; requests the i-th
memory page, then the VM shared page counter at the initial iteration S? is updated (Lines
14 through 17). Then, our proposed efficiency metric is calculated for each V; € V¥ (Lines 18
and 19), where the VM corresponding to the highest efficiency value is identified by index j
(Line 20). V5 is then allocated to VY (Line 21) and removed from V (Line 22). The three PM
resource capacities are then reduced by the amount of resource requests from V5 (Line 23).
Note, we do not add the shared pages sg back into the PM resource capacity C™ since at
k =0, V5 is the first VM allocated and only has a potential for sharing pages with other VMs
to be allocated later. Any memory pages which are deemed active according to activePage()
are then allocated onto PM server € through allocatePage() (Lines 24 through 26). After
the initial allocation according to the potential for sharing, k is updated to 1 (Line 27).

The second phase of G-SAVMM in Algorithm 4 starts by checking the availability

of resources of each type on the server (Line 3). A variable flag is set to 1 (Line 4)

www.manharaa.com

49

Algorithm 4 G-MSAVMM: Phase 11

1: {continued ...}
2: {Phase II: VM Allocation based on ezplicit page sharing in VH}
3: while ([C™, C*, C°] > 0) and (]V| > 0) do

4: flag + 1
5: fori=1,...,N do
6: for allj: V; €V do '
7 if (activePage(7;)) and (activePage(n’)) then
8: si=s+1
9: forallj: V; €V do
pi
10: Ef = -
J r m_sk;
DR R AL
rcR
11: j= argmax{EJ’»“}
J
12: if (C™ — (qu” — sé—“) <0)or(C" — qg,‘ <0)or (C° — qjs, < 0) then
13: flag <0
14: V=V\{V;}
15: if (flag) then
16: viE=vHu{v}
17: V=V\{V;}
18: [, €, 7] =[O, ¢, C°] - [(q - 55, g,]
19: fori=1,...,N do
20: if (activePage(w%)) then
21: allocatePage(7")
22: P=P+p;
23: k=k+1
24: Q« VH
25: exit

which indicates a valid VM allocation upon identifying the VM that is allocated later in the

algorithm. The major difference between the first phase that considers potential sharing and

the second phase is that in the second phase the sharing is determined relative to the VMs

that are already scheduled to be allocated on the server. The algorithm identifies the pages

which can be shared relative to memory pages already allocated, for every page requested

in each remaining V; € V. For those memory pages required by V; € V which are already

allocated, the shared page counter s;? is updated (Lines 5 through 8). Next, the efficiency

metric is calculated for all V; € V (Lines 9 and 10) and the VM with the highest efficiency

value is identified by the index j (Line 11). Prior to allocating V5, a check must determine

if the allocation will fully deplete any of the multiple types of resources provided by the PM

www.manharaa.com

20

(Line 12). If any of those resources are fully depleted, the flag variable is set to 0 (Line 13)
and V5 is removed from V (Line 14) since it cannot be allocated. If flag is still 1, then V5 is
stored in V¥ and removed from V' (Lines 16 and 17). The capacities of each of the multiple
resources of the PM are then reduced according to the resources requested by V- (Line 18),
that is, the PM memory capacity C"™ is reduced by q;” and s? pages are added back to the
capacity because those pages are already allocated and do not count against C" since they
will be shared as a result of a previous VM allocation. Any new pages requested by V7, if they
are not already allocated, are then allocated by calling allocatePage() (Lines 19 through 21).
Next, the revenue p; from allocation of V; € V¥ is accumulated into P (Line 22). Lastly,
the iteration count k is incremented (Line 23) and the process continues until either one of
the PM resources are fully depleted, or until V = (), and then the VMs in the set V¥ are
instantiated on the PM server Q (Line 24).

We now present an example to show how G-MSAVMM works. We consider a single
server with resource capacities: vCPU, C" = 6 vCPUs; storage, C* = 8 GB; and memory,
C™ = 16 pages. We consider four VM requests characterized by the parameters given in
Table 2.2 (derived revenue, p;; vCPU request, q;; storage request, ¢;; and memory request,
qj', translated into number of pages). Figures 3.2, 3.3, and 3.4 show the details of each
iteration k of G-MSAVMM. Within the Figures, page 7T;~, (t=1,...,16 and j =1,...,4), is
identified by a gray block, if it is requested by Vj, or by an empty block, if the page is not
requested by V;. The number of gray blocks per VM corresponds to the total number of
pages translated from the requested amount of memory, ¢;".

The first phase of G-MSAVMM is illustrated Figure 3.2. The array A in Figure 3.2,
stores these values per page and only the values where A" > 1 indicate potential for page
sharing. The maximum value in A corresponds to the page that is shared the most among all
the pages in V. Based on the parameters of our example, 7°, where the max count is identified
in bold in array A (Figure 3.2), would be shared the most and all VMs which request 7> would

be considered candidates for instantiation in the first phase of G-MSAVMM. The efficiency

www.manharaa.com

ol

k=0
P 4 4

Vi foslifel T PP TP Pd T T 10T
Vo [Losltlel T TP PP AT TP PP iT]
5 - Vs [Lslefel T T T T PA PP T TP 00 |
pi 4 4 4 s Ej V, [R0MATT TI T T T TTTTT

Vi109 1 2 4 4 13742 -
Vol 1.05 1 2 5 5 1.5169 P CvCs1 2 3 45 6 7 8 9101112131415 16
v, 135 2 2 7 6 1.6040 [OO[GIST T T T T T T TTTTTTTTT]

Vol 1.80 4 2 14 9 1.5898

Vi — {0}, A: GLEEEI B]

Figure 3.2: G-MSAVMM Efficiency Metric Calculation: [teration 0

k=1
P4 g

Vi 09[RP T T I T T ET T IT 101}
Vo LLOS[iel PH TP TPAT T IT T 0]}
pi 4G 4 4 s B L% INTESICY N 22 I I I I

Vil109% 1 2 4 3 1.0585 T
Vo105 1 2 5 2 1.0357 P C'Cs1 2 3 456 7 8 910111213 141516
Vil x ok ko ko x * [1.35]4]C] lele] o] lof Jejefe] [| | 1|
V,]1.80 4 2 14 5 1.1514 Vs ([L35]2]2] fojo] lof lof fojofol [| [] |

Vi ={Vs}

Figure 3.3: G-MSAVMM Efficiency Metric Calculation: [teration 1

metric value is then calculated for those VMs sharing the most requested page and, based on
the values given in Figure 3.2, the highest efficiency metric, 1.6040, is associated with V5. All
pages requested by V; are activated in IT and added to subset V. The activated pages under
provider management in Il are marked by gray boxes which are connected with vertical lines
to the pages required by V3. Lastly, the server resource capacities are reduced as follows:
vCPUs, C* = 4, storage, C* = 6, and memory, C"" = 9, according to V3 resource requests.
The service provider then updates the derived revenue from instantiating V5, amounting to

1.35.

www.manaraa.com

22

k=2
i 4 4
Vi loostl T T T LT R P 1T DT 01}
Vo LLos[ifel TH T T A T PA T T RTT 0]}
pi 4 4 4 s; E}

Vi109% 1 2 4 4 - i
v.l105 1 2 5 5 - P C'C*1 2.3 45 6 7 8 91011121314 1516
o I Gl Telele[e[elee]elele[e]e[e[e]e[e]
Vil ¥ x ok x Vs (LL3a]2]2] [Tolol [o] [o] | kolofol [[{TTI]1]]

v, |[T=20]4]2 N B B

Vi = {13, Vi}

Figure 3.4: G-MSAVMM Efficiency Metric Calculation: Iteration 2

The next iteration of G-MSAVMM, corresponding to the first iteration of the greedy
phase (k = 1), is illustrated in Figure 3.3. In this iteration, G-MSAVMM finds identical,
requested pages between VMs and the active pages within II. The efficiency metric value
is calculated for all remaining VMs regardless of their potential for page sharing, where the
highest efficiency metric, 1.1514, is associated with Vj. Following the instantiation of Vj,
the algorithm reduces the server resource capacities according to Vj’s resource request as
follows: vCPUs, C** = 0, and storage, C* = 4. For the server memory resource, V, consists
of 14 pages, where 5 pages are shared with active pages in II (i.e., o, w0, 7, 7%, and 7r10);
thereby, the server memory resource only needs to account for 7t, 7%, 7% 7% and 7! to
7' in TI, which are required to instantiate Vj. Lastly, the revenue is updated to 3.15. At
this iteration, G-MSAVMM stops because the memory resource has been exhausted and no
further VM instantiation is possible (Figure 3.4). The total revenue obtained by G-MSAVMM
for this example is $3.15, which is less than $4.05, the optimal revenue obtained by solving
the BMP-MSAVMM.

A slightly larger MSAVMM instance consisting of 20 synthetically created VMs, where
each VM may request up to 256 pages and considers multiple resource requests, shows a sig-

nificant difference in performance between BMP-MSAVMM and G-MSAVMM. By generating,

uniformly at random, VMs which are priced between $.30 for a single vCPU, 4 GBs of

www.manharaa.com

93

RAM, and 64 GBs of storage to $2.45 for a VM which requests 16 vCPUs, 64 GBs of RAM,
and 128 GBs of storage, our results show BMP-MSAVMM acquires 63% more revenue than
G-MSAVMM. Specifically BMP-MSAVMM generated $19.88 whereas G-MSAVMM generated
$12.18 when implemented on a single server consisting of 60 vCPUs, 1024 GBs of RAM, and
approximately 1 TB of storage. In the next section, we determine the approximation ratio
for G-MSAVMM which will characterize how far the solution obtained by G-MSAVMM can
be from the optimal solution.

3.5 G-MSAVMM Properties

In this section, we investigate the approximability properties of our proposed algo-
rithm. We determine the approximation ratio of G-MSAVMM by considering a worst possible
server setup, Q" for the MSAVMM problem. We consider Q" consisting of three resource
types: memory, vCPU, and storage. We assume that Q" has a small capacity for the mem-
ory resource, a large capacity for the vCPU resource, and a large capacity for the storage
resource.

Let VW denote a worst-case instance of the MSAVMM problem, where VM Vie W
does not share any memory pages with the other VMs in V. Then, let at least one VM
Vie € YW be comprised of pages which are a complement set of pages to VM V;. In addition,
let the remaining VMs in VW be comprised of either a subset of pages in VM Vi or be
equivalent to VM V.. In either case, the remaining VMs would be allocated onto Qv if Vi
were to be allocated first since they all share the same memory pages and would not reduce
the memory capacity of Q".

We investigate this instance on server Q" with a limited memory capacity such that
either VM V> or VM V5. can be allocated, but not both, while not depleting the vCPU and
storage capacities. If VM Vi, is allocated, then all remaining VMs in V" \ {V;}, will be
allocated as well due to page sharing and the freedom in both vCPU or storage capacities.
Else, VM V- is allocated and utilizes the memory capacity enough to not allow any other

VM from VW to be allocated. We assume that Q" has a large number of vCPUs available

www.manharaa.com

o4

and a large storage capacity that allows a set of M VMs to be allocated. If either the vCPU
or storage capacities were small, then only a subset of VMs may be allocated due to vCPU
or storage constraints in addition to the memory capacity.

Our design of VW and Q" will exhibit the greatest differences between the optimal
revenue obtained by an optimal algorithm (e.g., exhaustive search) and the revenue generated
from our greedy G-MSAVMM algorithm. If the memory capacity was larger than our proposed
setup, then the revenue generated from G-MSAVMM could be closer to the optimal revenue
generated by the optimal algorithm. Therefore, a server that has low memory capacity, high
vCPU capacity, high storage capacity, and where page sharing occurs, represents the worst
case scenario. In the following, we determine the approximation ratio for G-MSAVMM based
on the worst case instance VW and server Q"

Theorem 3.5.1. The approzimation ratio of G-MSAVMM is M~/ Crran(|R| + 1), where Cynay =
max{C™,C" C*}, R is the number of resources and M is the number of VMs.

Proof. Let the revenue obtained from an optimal solution be denoted by P*, and the optimal
set of VMs which generates P* from V" be denoted by V)pp, Vopr C VWV, where P* =

g p; under server resource owv.

LV epW
I Vi€Vopr

Let the revenue obtained by G-MSAVMM be denoted by P, and the set of VMs which

generate P from V" be denoted by Virp, Virgp C VWV, where P = Z p; under server
3 Vi€V¢Rp
resource Q"

Assume at k = 0, VM V; is allocated by G-MSAVMM onto QW admitting the re-
lationship E]Q < EJQ, for any j # j. Since VM V: does not share pages with VMs in A
82 = 0, and by Equation 3.6,

pj P;
Z ’“+1 @ g —sk 41

2 o+ o

reR

(3.7)

reR

www.manharaa.com

95

¢
> ot

reR

4o, G
Z CT‘ + Cm
reR

pj <p; (3.8)

which establishes the lower bound for p; in order for V; to be selected according to our
efficiency metric at k& = 0. This implies that for any p; greater than the established lower
bound, VM V5 will be allocated first onto QY from VW by G-MSAVMM. Considering the
memory utilization of VM V5 and memory capacity of Q" no other VM allocations can be

performed and k stops at 0. Since P = Z pj, therefore P = p;.
3Vi€VErp
Suppose through an exhaustive search, the optimal revenue value P* is calculated

whereby VM V. is allocated first onto QW Since every remaining VM in VW is comprised
of a subset of pages in VM V5., not including VM V3, then the exhaustive search allocates

all remaining VMs onto Q" without depleting the vCPU and storage capacities. Therefore,

the optimal value P* = Z p, implies P* = Z D;-
j:VjEV‘g/PT j5‘/jEVW\{‘/j}
In order to determine the approximation ratio for this instance of MSAVMM, we show

that P* < Pa, where « is the multiplicative factor that will give the approximation ratio of

G-MSAVMM. Therefore,

P* Zj:VjEVg/Pij

P Zj:VjEVX;VRD pj
- Zj:vjevW\{vj}pj (3.10)
P; '

www.manharaa.com

26

By substituting p; from Eq. 3.8, we obtain

@ g -sftl
Z cr + cm

P* 1 reR
| T m—sT4
7§ V;eVWA{V;} Z;%% + 9 Cm].
re

T m_gk 11

Yo+t
. rek (3.12)
FV,EVI\(V;} Lo
r%;%c c

DIV IR R
V,eVW\{V:} \ reR
= J (3.13)

Since

Yoot =\e (3.14)

reR

where Cppe = max{C™, C* C®}, we obtain

5 <Vl Y (|0 % - % (3.15)

JV;EVWA(V3) \ TER

Because

> é—] <> 1<IR (3.16)

reR reR

and

J

m _ ¢k 4 1
%<1
cm -

(3.17)

www.manharaa.com

57

we have

SV Y I (3.18)

JV;EV\{V:)

Thus,

el

< (M = 1)V Crax VIR + 1 < M/Craa(|R| + 1) (3.19)

*

Therefore, % is bounded by a@ = M+/Cpa:(|R| + 1), which results in an approximation
ratio of M+/Cias(|R| + 1) for the G-MSAVMM algorithm. O

We now investigate the time complexity of G-MSAVMM. The running time is dom-
inated by the second phase, the greedy phase. The while-loop (Line 29) is executed a
maximum of M — 1 times since one VM has already been inserted into V¥ and there exists
instances where YV C V. Within the while-loop, the running time is dominated by the search
and calculation of shared pages between the VMs in V and the active pages on) (Lines 31
- 34). The search and calculation are executed a maximum of M — 1 times, corresponding
to the possible number of VMs at k = 1, by the number of active pages to search on €2, thus
the running time is O(N(M — 1)). Then, the running time for the entire greedy phase is
O(N(M — 1)?). Thus, G-MSAVMM has an asymptotic running time of O(NM?) which is
linear in the total number of pages and quadratic in the number of VM requests.
3.6 Experimental Results

In this section, we describe the experimental setup and perform extensive experiments
investigating the performance of G-MSAVMM against other VM maximization algorithms.
3.6.1 Experimental Setup

The software used in the experiments and trace processing is implemented in C+-+
on 2.93 GHz Intel 64-bit Intel hexa-core dual-processor systems within the Wayne State

University High Performance grid [102].

www.manharaa.com

o8

Utilizing Google Cluster Usage Traces

For our experiments, we used the cluster usage traces from workloads running on
Google compute cells [83]. A compute cell is a set of machines within a single cluster,
supported by a common cluster-management system. We used the publicly available Clus-
terData2011 1 data set which reports the activity for a 12k-machine cell during May 2011
from Google Cloud Storage |37]. While the data set is publicly available, extensive effort has
been exerted in order to obfuscate information by normalizing, hashing and rescaling the
data to not explicitly reveal actual information such as users, applications, server specifica-
tions, etc. [84]. As a result, research focusing on characterizing the many facets of the data
set such as applications [26], user behavior [1] and workloads [67] [81], have already been
thoroughly presented in the literature. The ClusterData2011 1 data set consists of tables
grouped according to machines, jobs and tasks, which are further grouped into categories such
as attributes, constraints, events, and usage. We focus on a single table, task events, which
provides normalized data of relevant requests for CPU, memory, and local disk resources. In
order to generate a data set from task events which is meaningful to our investigation, we
employed a filtering strategy as follows:

e Eliminate traces which are missing information, i.e., acquire trace if missing info = 0.

e Eliminate traces where task events are evicted, failed, killed, or lost, and eliminate any
traces with update events, i.e., acquire trace if event type = 1.

e Eliminate traces where tasks have a low scheduling class. The scheduling class field
characterizes how sensitive a task is to latency. Since our investigation focuses on
revenue maximization, we only concern ourselves with those tasks which are classified
as high; reflecting a service to revenue generating user requests [83]. Due to obfuscation,
we do not know exactly that every trace with a high scheduling task is a revenue
generating user request; therefore, for our investigation we assume that traces at the

highest level of scheduling class are revenue generating user requests, i.e., acquire trace

if scheduling class = 3.

www.manharaa.com

29

nl-standard-{size} : (nls{size}) nl-highmem-{size} : (nlm{size}) nl-highepu-{size} : (nlc{size})

Bl () ©F () (6 @2) (9 (8 06 (73 @ (4 (3 (16 ()
Memory (GB) 3.75 7.50 15 30 60 120 13 26 52 104 208 1.80 3.60 7.20 14.40 28.80
vCPU 1 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Price ($/hour) 0.050 0.100 0.200 0.400 0.800 1.600 0.126 0.252 0.504 1.008 2.016 0.760 0.152 0.304 0.608 1.216

Table 3.5: G-MSAVMM Experiment: VM Instance Types.

e Eliminate traces where tasks have a low priority and that are monitoring. We only
consider traces corresponding to tasks classified as high priority, which will be last to
be evicted in the case of over-provisioning the machine resource, i.e., acquire trace if
priority > 8 and priority # 10.

e Eliminate any traces that allow for tasks within a job to be processed on different
machines. Since our investigation only considers a single machine resource, we only
consider traces where the job consists of tasks that must be allocated to a single
machine, i.e., acquire trace if different machines restriction = 0.

While the trace usage events in ClusterData-2011-1 supply a considerable amount of infor-
mation, our focus on revenue maximization requires each trace in our experiments to be
augmented with a revenue value which a service provider would receive following the instan-
tiation of a VM request. Since the trace usage data does not reveal the revenue acquired
from hosting revenue generating user requests, we fit each trace request in our experiments
to a priced Google Compute Engine VM Instance [38|, relative to its normalized memory
and cpu request values and server capacity values. The characteristics of Google Compute
Engine VM instances are given in Table 3.5. Due to both data normalization and obfuscation
techniques used in ClusterData-2011-1, identifying the exact server resources and extracting
its technical specification is not possible solely on the data provided. Therefore, our experi-
ments are conducted by simulating the resource capacities of a Lenovo Flex System x880 X6
Compute Node (Intel Xeon E7-8890 v2) PM server with the following resource specifications:
120 cores (8 chips x 15 cores per chip); 2 TB memory (128 x 16 GB DDR3) and 9.6 TB
disk space (24 x 400 GB SSD). The Lenovo Flex System x880 X6 Compute Node is the

highest rated server according to the SPECvirt sc2013 benchmark which evaluates data-

www.manharaa.com

60

center server performance and virtualized server consolidation conducted by the Standard
Performance Evaluation Corporation(© (SPEC), released in the 2nd quarter of 2015 [89].
Each VM instance used in our experiments reports its characteristics; memory, vCPU,
storage, and price. In order to fit each VM request, ¢, from the trace usage set to a Google
VM Instance, we first calculate the product of the normalized memory and CPU resource
request values in the filtered data and the server’s memory and vCPUs capacities, C™ and
C" respectively. The resulting products represent a specific amount of memory (in GB),
denoted by t™, and a number of vCPUs, denoted by t“, relative to the server specifications.
For every Google Compute Engine VM Instance g,, y € {1...16}, we denote its memory
requirement by g, and its vCPU requirement by g,. We calculate g, the index of the Google
Compute Engine VM Instance that minimizes the 2-norm relative error between t’s requested

amount of memory and vCPUs and g,’s requirements, as follows,

i it =grNE = g\
§ = argming [~z) + (- (3.20)
Y

Then, we map the trace request ¢ to the Google Compute Engine VM Instance gy,

that is, to the Google VM instance that fits the requested resources the best. Lastly, the
storage usage values are not fully captured within ClusterData-2011-1 traces due to Google
treating storage as a separate service from Google Compute Engine [83]. Therefore, we do

not use the VM storage request information within our experiments.

Modeling Page Sharing

Leveraging page sharing to maximize revenue requires the identification of appli-
cations and the operating system used by the instantiated VMs, which are not revealed
within the ClusterData-2011-1 trace set. Although, each task event operates within its own
container [83|, we treat each task event as a VM instance under various operating system
software.

For our experiments, we consider the page content similarity percentages among OSs

reported by Bazarbayev et al. |7]. These percentages are given in Figure 3.5. We con-

www.manharaa.com

61

C6.0 C6.1 C6.2 W64b WR2WR2S R6.0 R6.1 R6.2
Allocated VM Operating System

Py PY)
o o
o

<
Py
N
%

Arriving VM Operating System
o =
o 3
N [op N

0
o
=
OS Sharing Percentage Value Matrix

C6.0

Figure 3.5: Page Sharing Percentages Table: OS.

sider fixed page sharing percentages for every possible OS combination considered in our
experiments. Fach entry in the sharing table represents a page sharing percentage value
defined as the percentage of the OS memory of the already hosted VM that can be shared
by the OS of the newly arrived VM. Each VM in our experiment will select uniformly at
random one of three versions of three OSs: CentOS Server x86 64 (C6.0-6.2); Windows
Server 64bit (W64b), Windows Server R2 (WR2), Windows Server R2 SQL (WR2S); and
Red Hat Enterprise Linux x86_ 64 (R6.0-6.2).

To show how page sharing works in our experiment, if a server has a VM which has
selected CentOS server 6.0 (C6.0) as its OS and another VM which is attempting to be
collocated on the same server has selected CentOS server 6.2 (C6.2), then the VM which
selected C6.0 will share 28% of C6.2’s OS pages. Since C6.0’s OS image size is .77 GB and

the amount of memory that is shared between C6.0 and C6.2 is 220 MB, then the sharing
220MB
77GB
are those determined by Bazarbayev et. al [7]. On the other hand, if a server has a VM which

= 28%. The amount of memory sharing and image sizes

percentage is calculated as

has selected CentOS server 6.2 (C6.2) as its OS and another VM which is attempting to be

has selected CentOS server 6.0 (C6.0), then the VM which

www.manharaa.com

62

selected C6.2 will share 11% of C6.0’s OS pages. Since C6.2’s OS image size is 1.96 GB

and the amount of memory that is shared between C6.0 and C6.2 is still 220 MB, then the
220MB
1.96GB
(6.0 and C6.2 share the same amount of memory in both cases, but the percentages are

sharing percentage is calculated as = 11%. As can be seen from the above example,
different because they are calculated relative to different bases, C6.2 in the first case and
(6.0 in the second case. This asymmetry in terms of sharing percentages also occurs for
other OS combinations given in Figure 3.5. Furthermore, we consider that CentOS and Red
Hat Enterprise Linux (RHEL) distributions of the same version share approximately 95% of
their content. CentOS is an open-source version of RHEL with the exception of proprietary
updates and trademarks (see CentOS 6.2 Release Notes). We slightly scale down the page
sharing percentages between two VMs with different versions of RHEL and CentOS according
to the inter-OS version sharing percentages in Figure 3.5. Lastly, cases exist in which two
operating systems will share very little memory, as was found by Sindelar et. al [86] for
Windows and Linux OS distributions. Since the sharing is marginal in these cases, we assign
a sharing percentage value of 0 when this occurs, i.e., a VM operating under Windows Server
R2 (WR2) and a VM operating Red Hat Enterprise Linux 6.0 (R6.0) which are collocated

on the same server will not share any OS pages between them.

Comparing G-MSAVMM

We compare our algorithm with other algorithms for VM maximization. Since such
algorithms are not available in the literature, we decided to design several types of greedy
algorithms that use various greedy ordering methods based on single parameters such as
revenue, number of shared pages, vCPUs, and amount of memory, and use them in our
experiments. Thus, we compare G-MSAVMM with four algorithms that are variants of G-
MSAVMM: P-DO which allocates the VM requests in decreasing order of their revenue (this
corresponds to G-MSAVMM with Ef = p;); SP-DO which allocates the VM requests in
decreasing order of the number of shared pages (this corresponds to G-MSAVMM where

E* is calculated with p; = 1, and the first term under the square root equal to 0); C-10

www.manharaa.com

63

Table 3.6: Algorithms Used in Experiments.

Algorithm | Greedy ordering
G-MSAVMM | Decreasing order of EJ’c
P-DO Decreasing order of revenue.

SP-DO Decreasing order of the number of shared pages.
C-DO Decreasing order of the number of requested vCPUs.
C-10 Increasing order of the number of requested vCPUs.
M-DO Decreasing order of the amount of requested memory.
M-10 Increasing order of the amount of requested memory.

DR-DO Decreasing order of the dominant resource.

DR-IO Increasing order of the dominant resource.

which allocates the VM requests in increasing order of the number of requested vCPUs (this
corresponds to G-MSAVMM where E]’C is calculated with p; = 1, and the last term under the
square root equal to 0); and, M-IO which allocates the VM requests in increasing order of
the amount of requested memory (this corresponds to G-MSAVMM where E]’C is computed
with p; = 1, the first term under the square root equal to 0, and s;? = 0). We also compare
G-MSAVMM with four other greedy algorithms that are not variants of G-MSAVMM: C-DO
which allocates the VM requests in decreasing order of the number of requested vCPUs;
M-DO which allocates the VM requests in decreasing order of the amount of requested
memory; DR-DO, which allocates VMs in decreasing order of the dominant resource request;
and, DR-10O, which allocates VMs in increasing order of the dominant resource request.

The last two algorithms are dynamic in the sense that their greedy order is dependent
on the largest (dominant), normalized resource value given dynamic provisioning of the
PM server resource. The algorithms used in our experiments are presented in Table 3.6.
Each greedy algorithm used for comparison is designed to benefit from page sharing at
the hypervisor level (i.e., once the allocation is decided by the algorithms, the hypervisor
identifies the pages that are shared among the allocated VMs), but they do not consider the
sharing of pages in determining the allocation. There is one exception, SP-DO algorithm,

which uses the number of shared pages to establish the greedy ordering, and thus, the

allocation.

www.manharaa.com

64

3.6.2 Analysis of Results

We now compare the performance of G-MSAVMM against the other greedy algorithms
considered in our experiments. Our experiments consist of using the filtered Google cluster-
usage trace events according to our strategy described in Section 3.6.1. We use a portion of
the transformed trace events which consists of 15,000 events. The distribution of VMs which
are used in our experiments is illustrated in Figure 3.6.

We partition our trace into windows, i.e., uniform interval partitions of the entire
trace. Each algorithm in our experiments will operate and allocate VM requests to a server
within a window according to its design and available server resources. Our experiments
consider three types of windows: W30, W50 and W100 where a server will attempt to
allocate a portion of the VMs. For example, in the case of W50, the trace is partitioned into
50 VM requests per window and each window is assigned a single server (300 servers total
in W50). For W30 and W100, the trace is divided into sets of 30 and 100 VM requests,
respectively. When at least one of the server resources has been exhausted in the current
window, the server is considered closed and any VM which remains unallocated in the current
window is rejected. Then, the next window becomes available and a new server comes online
ready for each algorithm to undergo its allocation process until all 15,000 events have been
considered.

In Figure 3.7, we plot the increase of memory utilization when comparing G-MSAVMM
against sharing-oblivious versions of the algorithms listed in Table 3.6. For each window
within W30, W50, and W100, we implemented sharing-oblivious versions of these algorithms,
meaning the hypervisor mechanism which performed the search for shared pages was turned
off and duplicate pages could be present among collocated VMs’ memory requests. We,
then, recorded the amount of memory each sharing-oblivious algorithm utilized following
the allocation of VMs within each window for W30, W50, and W100 to the available server
resource. Lastly, we implemented G-MSAVMM for each window within W30, W50, and

W100, then recorded the amount of memory that was utilized in the VM allocation. The

www.manharaa.com

65

6000

5000 +

4000

3000 ~

Number of VMs

2000 +

1000

0 T T T T T T T T
nlsl nls8 nlsl6 nimz2 nilm4 nilm8 nimil6 nim32
VM Types

Figure 3.6: Distribution of Google Type VMs in Experiment.

increase in memory utilization is the difference between G-MSAVMM'’s memory utilization
and the maximum memory utilization recorded among the sharing-oblivious algorithms. The
algorithms which generated the maximum memory utilization fluctuated between sharing-
oblivious versions of SP-DO, M-10, and DR-IO for each window within W30, W50, and
W100. Memory tends to be the extraneous resource which remains when the vCPU capacity
has been exhausted on the server which hosts the VM requests. By taking page sharing
into consideration, an increase of memory utilization can be achieved by a sharing-aware
algorithm such as G-MSAVMM so that less memory lies dormant when vCPU resources
have been exhausted. Based on our experiments, we have found that on average using G-
MSAVMM increases the overall memory utilization by approximately 26% across W30, W50,
and W100. In Figure 3.7, we show that by using G-MSAVMM, the increase in memory
utilization is between 7% and 40% over all 500 windows in W30, between 10% and 41% over
all 300 windows in W50, and between 11% to 42% over all 150 windows in W100.

In Figure 3.8, we show the average aggregated revenue ratios obtained by the algo-
rithms using our trace. The revenue ratio is defined as an algorithm’s obtained revenue

per window, over the revenue generated by the best performing algorithm within the same

www.manharaa.com

66

50

30
20

Utilization (%)

0 T T T T T T T T T
50 100 150 200 250 300 350 400 450 500
W30 Window Sequence

50
40 -

20 ~
10
0 T T T T T T T T T T T
25 50 75 100 125 150 175 200 225 250 275 300

W50 Window Sequence

Utilization (%)
w
o
l

50
40
30

10
0 T T T T T T T T T
15 30 45 60 75 90 105 120 135 150

W100 Window Sequence

Utilization (%)

Figure 3.7: Sharing vs. non-Sharing Memory Utilization.

window. The revenue ratios indicate each algorithm’s performance proximity to the maxi-
mum revenue attained for that window within the window sequence. These revenue ratios
will never be larger than 1 for any of the algorithms during any window within the window
sequence. By aggregating these ratios and then dividing by the number of windows in the
sequence (e.g., for W50, there will be 300 windows within the window sequence), we calculate
the average aggregated revenue ratio, which provides insight into which algorithm exhibits
the best performance in terms of revenue.

G-MSAVMM obtains the highest average aggregated revenue ratio for all three window
intervals (Figure 3.8). Moreover, as the window size increases the eight competing algorithms
exhibit a decrease in revenue which is in contrast to the increase in revenue exhibited by
G-MSAVMM. Our experiments show that as the windows grow larger and contain greater

VM resource type heterogeneity, G-MSAVMM makes better greedy allocation decisions for

www.manharaa.com

67

W30 =
W50 m—
0.98 - W100 m—

096 A

0.94 4

0.92 4+

0.9 A

0.88 1

0.86

Average Aggregate Revenue Ratios

0.84 4+

0.82 4+

0.8
G-MSAVMM P-DO SP-DO C-DO C-10 M-DO M-I0 DR-DO DR-IO

Figure 3.8: Average Aggregate Revenue Ratios.

revenue generation than the competing algorithms. The next best performing algorithm is
C-10 which tends to have similar behavior to G-MSAVMM due to the fact that vCPU is a
scarce resource. G-SAVMM tends to outperform C-10 in terms of average aggregated revenue
ratios by approximately 3% in W30, 5% in W50, and 7% in W100.

We also investigate the performance of the algorithms in terms of average generated
revenue per server (Figure 3.9). The results are consistent with those in Figure 3.8, in that
G-MSAVMM generates the highest average revenue followed by C-10 for all window types.
G-SAVMM outperforms C-IO0 when comparing the average revenue generated per server by
approximately 3% in W30 (or by $0.27), 5% in W50 (or by $0.43), and 8% in W100 (or by
$0.73). While these differences maybe small; operating at scale with millions of VMs and
tens of thousands of servers can lead to sizable losses of revenue if a less efficient algorithm
is used. Our results reveal that G-MSAVMM is the best performing algorithm, obtaining
greater revenue ratios and higher average revenue than the other eight algorithms.

When allocating VMs to server resources, the scarcest resource is the vCPU resource.
Therefore, algorithms which conserve the vCPU resource and maximize the use of the less

scarce tnemory resource while generating higher revenues are desirable. In Figure 3.10,

www.manaraa.com

68

9.4 L L I I I I I I I
W30 =
W50 m—

W100 m—

9.2 A

8.8 A

8.6

Average Revenue ($)

84 A

7.8

G-MSAVMM P-DO SP-DO C-DO C-10 M-DO M-I0O DR-DO DR-IO

Figure 3.9: Average Revenue Per Server.

we compare the eight resource-centric algorithms against G-MSAVMM in terms of resource
utilization. On the left side of Figure 3.10, we compare three memory-centric allocation
algorithms, SP-DO, M-DO and M-I0O, against G-MSAVMM, and on the right, we compare
three vCPU-centric allocation algorithms, P-DO, C-DO and C-10, against G-MSAVMM. P-
DO is a vCPU-centric allocation algorithm since the value of a VM is more related to
the scarcity of the vCPU resource. Focusing on memory, we plot the average utilization
percentage for each memory-centric algorithm. SP-DO slightly outperforms G-MSAVMM by
5% in W30, .8% in W50, and 1% in W100. While SP-DO utilizes slightly more memory
than G-MSAVMM, choosing SP-DO as the allocation algorithm would lead to significantly less
revenue generated on average per server. Focusing on vCPUs, we plot the average utilization
percentage for each vCPU-centric algorithm. C-10 slightly outperforms G-MSAVMM by .5%
in W30 (conserving .64 of a vCPU core), .7% in W50 (conserving .84 of a vCPU core), and
1% in W100 (conserving 1.16 vCPU cores). While C-10 utilizes slightly less vCPUs than G-
MSAVMM, choosing C-10 as the allocation algorithm would lead to less revenue generated on
average, $.27 instead of $.73 per server. Although G-MSAVMM is a multi-resource allocation

algorithm, its memory utilization is marginally close to the best memory-centric algorithm,

www.manaraa.com

69

100 W30-MEM E=—=aW100-MEM == \W30-CPU —3W100-CPU EXX=
W50-MEM W50-CPU EX==
95 B
S
=t
o
©
N
=)
> 90
e
p=}
o
17
[)
i3
85 A
80 T T T T
G-MSAVMM SP-DO M-DO M-IO G-MSAVMM P-DO C-DO C-10

Figure 3.10: Memory / CPU Utilization.

SP-DO, and its vCPU utilization is marginally close to the best vCPU-centric algorithm,
C-10; subsequently generating the highest revenue among them.

Throughout our experiments, certain algorithms obtain greater revenue relative to
G-MSAVMM for specific windows within W30, W50 and W100. The performance of the
algorithms depends on the number and type of VMs requested within each window. For
instance, when comparing G-MSAVMM to C-10 on a window with fairly homogeneous VM
requests, their allocation behavior is nearly identical. In contrast, when the heterogene-
ity of VM types in a specific window increases, they behave differently with G-MSAVMM
outperforming C-l0 in terms of obtained revenue.

Lastly within our experiment, there are windows with specific VM type requests
combinations which stifle G-MSAVMM performance against other algorithms. By analyzing
the behaviors of these algorithms on specific sets of VM requests, we can identify under which
set of VM requests should a specific allocation algorithm be used. In Figures 3.11, 3.12
and 3.13, we show the configurations of VM requests for specific W30, W50 and W100

windows. This illustrates the differences in allocation behavior between G-MSAVMM and its

www.manharaa.com

70

45 1 1 1 1 1 1 1 1 1 1 1 1
nlsl
nls8 .
40 A nlsl6 =
nim?2 .
nim4 =3
35 nimg ===
nlmlé =3
nim32 ==
n 30 A
S
5 25 A
(O]
o .
= 20
>
2 15 _
10
5 _
0 - + 0 + 0 + 0 + 0
TR Tt TN Tl TR Tt TN Tl
P-DO SP-DO C-1O M-I1O

Figure 3.11: W30: G-MSAVMM behavior for different VM request configurations.

In each of the figures, we denote by p™ on the horizontal axis, the VM requests
combinations in which the allocation results in the largest revenue for G-MSAVMM. Likewise,
we denote by p~, the VM requests combinations in which the allocation results in the
largest revenue for P-DO, SP-DO, C-10 and M-10. Lastly, we denote by ;” the VM requests
combinations in which G-MSAVMM'’s revenue is the same as that of P-DO, SP-DO, C-10, and
M-10. While some outlier combinations exist (e.g., P-DO at u” in W50), our results show that
G-MSAVMM tends to outperform all other algorithms when VM requests are heterogeneous
both with respect to the VM characteristics and the number of VMs of each type requested
within the windows.

3.7 Summary

We designed a sharing-aware greedy approximation algorithm (G-MSAVMM) for solv-
ing the multi-resource sharing-aware VM maximization problem. We showed that G-MSAVMM
isa M \/m—approximation algorithm, where M is the number of VM instances

www.manharaa.com

71

70 A

40 A

30 A

Number of VMs

20 A

+ 0 - + 0 - + 0 - + 0 -
oo oo uop o oo
P-DO SP-DO C-10 M-10

Figure 3.12: W50: G-MSAVMM behavior for different VM request configurations.

that are to be allocated, C,,,, is the maximum capacity among all types of resources, and
R is the number of resource types except the memory resource. The experimental results
showed that G-MSAVMM outperforms eight other VM allocation algorithms in terms of gen-
erated revenue and efficient utilization of resources. In future work, we plan on extending
G-MSAVMM to manage the VM allocation process in online environments. Incorporating
energy consumption awareness and network virtualization into the multi-resource type VM

allocation problem would be an interesting extension.

www.manharaa.com

72

nlsl
140 A nls8
nlsl6
nim2
120 - hims
niml6
nim32
»n 100 A
=
>
S 80
@
o)
E 60
2
40
20
0 + 0 + 0 + .0 + 0
¥ ¥ L O L O T T T
P-DO SP-DO C-10 M-10

Figure 3.13: W100: G-MSAVMM behavior for different VM request configurations.

www.manaraa.com

73

CHAPTER 4: MULTI-RESOURCE VM PACKING

4.1 Introduction

Cloud adoption by government, industrial, and academic institutions has created
opportunities for providers to offer services through flexible infrastructures based on vir-
tualization technologies. Industry forecasts predict that by 2019 approximately 80% of all
workloads will be managed through data center virtualization services [18]. A challenge
facing cloud service providers is the development of efficient resource allocation mechanisms
allowing them to reduce the costs and increase their profits.

Current virtualization technologies incorporate mechanisms that perform memory
reclamation, i.e., mechanisms that regulate/conserve memory resources when multiple VMs
are instantiated through a hypervisor layer. The deduplication of similar memory pages
between two or more VMs instantiated through the same hypervisor layer, i.e., page-sharing,
is an example of such mechanisms which are common to both open source and proprietary
platforms. Page-sharing and similar mechanisms drive the development of more efficient
algorithms suitable for resource management. A variant of the VM resource allocation
problem motivated by these developments is the VM Packing problem [86].

The VM Packing problem considers instantiating multiple VMs in an “offline” setting
which utilizes hypervisors as an architectural layer on top of physical servers, allowing for
page-sharing; resulting in reduced utilization of the memory resource. Traditionally, VM
allocation problems with multiple resource requirements have been modeled as vector bin
packing problems, where each resource is represented as a vector component. The goal is to
minimize the number of active servers used in order to instantiate a set of VMs according to
server allocation policies and available resource capacities. The online VM Packing problem
considers how to assign VMs, whose resource requests are unknown until they arrive to the
cloud service provider, such that the number of active servers is minimized. Classical sharing-
oblivious vector bin packing algorithms in an online setting where VMs request multiple

types of resources, will result in less efficient allocations since they do not leverage memory

www.manharaa.com

74

sharing opportunities. Therefore, in this chapter, we design and investigate algorithms for
solving the sharing-aware online VM Packing problem which results in a minimum number
of active servers used to instantiate arriving VMs, where page-sharing occurs relative to
VMs already instantiated on the servers. Since hypervisors used by cloud providers employ
memory reclamation, our sharing-aware online algorithms leverage this utility; significantly
reducing the number of servers needed to satisfy the user requests and implicitly reducing
energy and service costs.
4.1.1 Our Contribution

We propose sharing-aware online algorithms for solving the VM Packing problem with
multiple resource requirements and heterogeneous server capacities in an online setting. Our
proposed sharing-aware online algorithms are improved designs of classical sharing-oblivious
online algorithms for vector bin packing which take page sharing into account when making
allocation decisions in cloud environments with heterogeneous server capacities and hetero-
geneous resource VM requests. We introduce a new server resource scarcity metric necessary
for designing sharing-aware online Best-Fit and Worst-Fit type algorithms. Our server re-
source scarcity metric considers all VM resource requirements, server’s available resource
capacities and page-sharing to identify a server with the highest priority to instantiate an
online VM request. We formulate the “offline” sharing-aware VM packing problem as a
multilinear boolean program which when solved provides the optimal VM to server assign-
ments. We perform extensive experiments to compare the performance of our sharing-aware
online VM packing algorithms against several sharing-oblivious packing algorithms. To the
best of our knowledge, no sharing-aware online algorithms for packing VMs with multiple
heterogeneous resource capacities and requirements have been proposed to date.
4.1.2 Related Work

Several variants of online vector bin packing problem modeling the allocation of re-
sources in clouds have been recently investigated. Song et al. [88] proposed a semi-online bin

packing algorithm for resource allocation. Their proposed setup allows VMs to be reshuffled

www.manharaa.com

)

through live migration among the servers if resource conservation can be achieved. Li et
al. [57] introduced novel variants of bin packing algorithms which attempt to minimize the
total cost associated with a server’s utilization. Kamali and Ortiz [50] improved upon the
upper bound for Next-Fit and introduced a new algorithm, Move To Front, which performed
the best in the average case for the online dynamic bin packing total cost minimization
problem. Azar et al. [3] proposed vector-bin packing algorithms, analyzed their performance
under various VM sequences, and established lower competitive ratios. Panigrahy et al. [72]
studied heuristic variants of the First-Fit-Decreasing algorithm for “offline” VM allocation.
Resource awareness is a prevalent topic in designing resource allocation algorithms for
cloud environments. Carli et al. [16] formulated a variant of the bin packing problem, called
Variable-Sized Bin Packing with Cost and Item Fragmentation, which is energy-aware when
attempting to pack cloud resource requests onto servers in both online and “offline” settings.
Breitgand and Epstein [14] considered a variant of the bin packing problem called Stochastic
Bin Packing (SBP) which is risk-aware of network bandwidth consumption, and designed
both online and approximation algorithms to solve it. Kleineweber et al. [54| investigated a
variant of the multi-dimensional bin packing problem which is QoS-aware relative to cloud
file systems, specific to storage virtualization. Zhao et al. [109] designed online VM algo-
rithms specific to energy and SLA-violation awareness to increase a cloud provider’s revenue.
Xu et al. [105] developed a hardware heterogeneity, VM-inference aware provisioning tech-
nique which focused on predicting MapReduce performance in the cloud. Xiao et al. [104]
modeled the scaling of internet applications in the cloud as a class of constrained bin pack-
ing problem and solved the problem using an efficient semi-online algorithm which supports
green-computing. Hao et al. [42] proposed an online, generalized VM placement strategy
which considers variation on cloud architectures, resource demand duration and data-center
location. Mashayekhy et al. [61] designed an online mechanism for resource allocation and
pricing in clouds. While these contributions focus on VM allocation, none of them takes into

account the potential for memory sharing when making allocation decisions.

www.manharaa.com

76

Several systems such as Satori [65], Memory Buddies [101], and Difference Engine [41]
considered hypervisor-based VM page-sharing, but did not address the design of sharing-
aware online algorithms for VM packing. Sindelar et al. [86] were the first to propose and
analyze “offline” sharing-aware algorithms for the VM Maximization and VM Packing prob-
lems under hierarchical page sharing models. Our work in this chapter differs substantially
from Sindelar et al. [86] in that we design algorithms for an online setting, consider multiple-
type VM resource requests, assume heterogeneous server capacities and operate under a
general sharing model which frees the limitation of page sharing due to grouping VMs via
hierarchical models.

In Chapters 2 and 3 and our previous work [77, 79|, we considered the design of
sharing-aware “offline” algorithms for the VM Maximization problem under the general shar-
ing model. The VM Maximization problem considered in our previous work is different from
the problem of VM Packing considered in this chapter. The objective of the VM Maxi-
mization problem is to allocate VM instances onto a set of servers such that the profit is
maximized, while the objective of the VM Packing problem is to minimize the number of
servers used to host user requested VM instances.

4.1.3 Organization

The rest of the chapter is organized as follows. In Section 4.2, we define the Sharing-
Aware Online VM Packing problem. In Section 4.3, we present the design of our proposed
online sharing-aware algorithms. In Section 4.4, we present and solve the “offline” version of
the sharing-aware VM packing problem. In Section 4.5, we compare the performance of our
proposed algorithms against that of several sharing-oblivious algorithms through extensive

experiments. In Section 4.6, we summarize our results and present possible directions for

future research.

www.manharaa.com

7

Table 4.7: SA-OVMP Notation.

Expression | Description

S Set of available servers.
V; Virtual machine j.
Sk Server k.
S Set of inactive servers; S C S.
N Maximum number of pages between Sy and V.
M Number of servers in configuration; |S| = M.
qj Requested number of CPUs by V; (cores).

q" Requested amount of memory by V; (GB).
qa; Requested amount of storage by V; (GB).

cy CPU capacity of server Sy, (cores).

oy Memory capacity of server S; (GB).

i Storage capacity of server Sj (GB).
R Subset of server resource types u and s; R = {u, s}.
ek Server scarcity metric relative to Sy and V.
sé Shared pages requested for V; and managed by S.
% Set of available “offline” virtual machines.

PV) Power set, of “offline” virtual machines V.
J Index of “offline” virtual machines in P (V).

4.2 SA-OVMP: Problem

We now introduce the Sharing-Aware Online Virtual Machine Packing (SA-OVMP)
problem from the perspective of a cloud service provider. The notation used in the chapter
is presented in Table 4.7.

We consider a cloud service provider that offers resources in the form of VM instances
to cloud users. A VM instance is denoted by V; and is characterized by a tuple [q;‘, q", q;f],
where ¢; is the number of requested CPUs, ¢i" is the amount of requested memory, and
q; is the amount of requested storage. The cloud service provider has a set S of servers
available for instantiating user requested VMs. Each server S € § is characterized by a
tuple [Cy, C", Cy], where C} is the number of available CPUs, C}" is the available memory
capacity, and C} is the available storage capacity. We denote by R the subset of resource
types composed of CPUs (type denoted by w) and storage (type denoted by s), that is,
R = {u,s}. The memory resource (type denoted by m) is not included in R since in the

design of our algorithms we will treat the memory resource differently by considering memory

www.manharaa.com

78

sharing among the VMs collocated on the same server. For simplicity of presentation, we
only consider these three types of resources; but the SA-OVMP problem and our algorithms
in Section 4.3 can be easily extended to a general setting with any number of resources.

When several VM instances are hosted on a server Si, and they use a common subset
of memory pages, the total amount of memory allocated to those VM instances can be
reduced through page-sharing. For example, when two Microsoft Windows 8 VM instances
are collocated on the same server, they can share a significant amount of pages and the total
allocated memory to those two VM instances can be reduced significantly compared to the
case in which page sharing is not considered. To determine the amount of memory sharing
among collocated VM instances, the cloud provider uses a staging server that computes
the memory fingerprints [101] of the VM instance that is ready for allocation on one of
the servers. The fingerprint of the VM instance is then used to determine the amount of
memory sharing (in pages), denoted by s;?, which occurs among the currently considered VM
instance, V;, and the VM instances that are already hosted by server Sj. Bloom filters [101]
are used to identify the number of shared pages s? between VM V; requested pages and pages
already allocated to server Si. This process has runtime complexity of O(N); where N is
the maximum between the number of pages managed by server Sy and those pages required
by V.

The cloud provider is interested in hosting all VM instances requested by the users
while activating the minimum amount of servers. The requests for VM instances arrive
one by one and the cloud provider decides the assignment of a newly arrived VM request
without knowing any information about future requests. Thus, this is an online setting and
the cloud provider must rely on online algorithms to assign VMs to servers. Our goal is to
design such online algorithms for VM packing that take the sharing of memory into account

when making allocation decisions. We formulate the Sharing-Aware Online VM Packing

(SA-OVMP) problem as follows,

www.manharaa.com

79

SA-OVMP problem: We consider a cloud provider having a set of servers, S =
{541, 5s,..., 5|5/}, where each server Sy, € S is characterized by [C}, C}", Cy], and
a sequence of VM requests {V1,V5...,Vj, ...}, arriving one by one, where each
VM request V; is characterized by [¢}, ¢}, ¢j]. A VM request must be assigned

to a server S, € S upon arrival, so that the following capacity constraints are

satisfied:
Ci'—q"+ sy >0 (4.1)
Cr—q; =20, VreR (4.2)

where sf is the amount of memory sharing among the currently considered in-
stance V; and the VM instances that are already hosted by server S,. The
objective is to minimize the total number of active servers necessary to serve the
requests.

Equation 4.1 is the memory capacity constraint, guaranteeing that the available mem-
ory capacity of server Sy is not exceeded. The available capacity C}" — ¢i* is adjusted for
the amount of sharing, S?, between V; and the VM instances already hosted by Si. The
constraints in Equation 4.2 guarantee that the capacities of the other types of resources of
server S, are also not exceeded.

4.3 SA-OVMP: Algorithms

In this section, we design sharing-aware online algorithms for solving the SA-OVMP
problem. Before describing the algorithms we introduce few definitions and assumptions
concerning the servers. The servers managed by the cloud provider are in one of the following
two states: active and inactive. An active server is a server that is powered on and is
currently considered for allocation by the algorithms. An inactive server is a server that is
not powered on and is not currently considered for allocation by the algorithms. We denote
by S the set of inactive servers. When all the VMs hosted by a server are terminated the

server becomes an inactive server and can be activated in the future. Initially, all servers

www.manharaa.com

80

Sli{(b} 5’2{@}

[0)e) [o)e)

00 00

00 00

(0)©) (0)®)

Sgl{@} 54{@}

00

00 00

(0)©) (0)®)

Vi Va V3 Vs
(@) (X] [C) C0000| |®

e

Vi units {1} {2} {3} {4} {5} {6}| S {1} {2} {3} {4}
¢" 4MB 4 6 5 6 8 6 |Cr 16 12 12 8
¢/ 4CPUs 1 2 1 5 5 1 |C' 8 8 6 4
¢ 256GB 1 1 2 1 2 1 |Ci 8 4 2 1

Figure 4.1: SA-OVMP: VM Requests and Resource Configuration.

are inactive servers, i.e., S = S. All the sharing-aware algorithms presented in the chapter
assume that the amount of sharing, sf , among the currently arrived VM V; and the VMs
hosted by active server Sy, was already determined through memory fingerprinting on the
staging servers as described in Section 4.2.

To illustrate how each of our sharing-aware online algorithms works, we consider an
instance of the SA-OVMP problem with the resource configuration presented in Figure 4.1.
Each server in Figure 4.1, S; through S, is characterized by the number of CPUs (each
circle corresponds to 4 CPU cores available in the left rectangle within each server image),
memory in MB (each small square corresponds to 4 MB of available memory, in the middle,
larger square within each server image) and storage in GB (to which, a mesh block will
correspond to 256 GB of available memory and fill the empty space in the right rectangle
within each server image). The diagonal lines in each of the servers correspond to either
unavailable memory or storage. By representing the servers in this way, we can capture the

er resource capacities. Initially, there are no VMs allocated

www.manharaa.com

81

to the servers. This is represented by Sy : {0} placed above each server image. Each
VM in Figure 4.1, V; through Vg, is characterized by the same set of resource types as the
servers and their requests are identified by shaded circles, shaded squares, and shaded mesh
blocks (using the same units of measure as used for the servers, where one circle corresponds
to 4 CPUs, one square corresponds to 4 MB, and one mesh block corresponds to 256 GB
of storage). For instance, VM V, requests 20 CPUs, 24 MB of memory for a specific set
of applications, libraries, etc., in exactly the memory pattern illustrated within the middle
square and, lastly, it requests 512 GB of storage identified by the two mesh blocks at the
bottom of the VM image. When we illustrate how our sharing-aware online algorithms work,
the server resources will be reduced incrementally in the included table and the space within
the server for each resource type will be shaded according to the respective VM requests.
Lastly, page sharing is identified when two or more VMs request memory by imposing a
shaded rhombus on top of the memory block which is shared. Page sharing is illustrated in
Figure 4.2 through Figure 4.12 for each of the proposed algorithms.
4.3.1 Next-Fit-Sharing (NFS) Algorithm

In order to design NFS, we need to introduce a third type of state for servers, called
closed. A closed server is already hosting VM instances and is not currently considered for
allocation by the algorithm. The NFS algorithm is given in Algorithm 5 and works as follows.
Upon arrival of VM request Vj, the cloud provider determines if V; can be packed onto the
active server denoted by S; € S\'S. Ounly one server is active at any time and server S
is initially activated upon the first VM arrival. If active server S; has enough capacity for
every resource type to instantiate V; while considering the sharing of memory, 55? , then Vj is
packed onto server S (lines 3 and 4). Else, server Sj, is closed using a function close (line 6)
and the search begins for finding a server which has enough resource capacity to instantiate
V;. We note that for problem instances with servers having the same resource types and size
characteristics, the next server will automatically suffice if every server has enough capacity

for every VM type. For servers with heterogeneous resource characteristics (which is the

www.manharaa.com

82

Algorithm 5 NFS

1: Input: VM instance arrival (V})

2: {S;: currently active server.}

3: if (|CF, C¥, C2| — |q)" — s, ¢, ¢} > [0, 0, 0]) then
4: S; S u{V;}

5: else

6: close(S})

. ke k1l

8: while (k < |S|) do

9: if (¢, CF, C7] = laj" — sf, qaj, q;] = [0, 0, 0]) then
10: activate(S;)
11: S+ S\ {S;}
12: break
13: e k+1
14: if (k> |S|) then
15: exit

16: S; « S; U {V;}
17: [OF, CF, G}] = [OF, CF, G = 4" — 55, 45, 45

case in our SA-OVMP problem), a search must ensue to find a server which meets the V}’s
resource demand.

Following server S;’s closure, server index k is incremented (line 7). The algorithm
enters a while loop to search for a server among the inactive servers which can host V; (line
8). If the V’s resource demand can be satisfied by server S;, then the server is activated by
a function activate, removed from the set of inactive servers, and the algorithm leaves the
while loop (lines 10 - 12). Else, the search continues within the while loop by incrementing
server index k until a server is found with enough resources to host V; (line 13). Following
the while loop, if the server index exceeds the number of available servers, V; cannot be
hosted and the algorithm exits (lines 14 and 15). Otherwise, the algorithm found a suitable
server S; within the available servers and V; is allocated to S; (line 16). Lastly, server S;’s
resource capacities are reduced accordingly (line 17).

The difference between NFS and a standard sharing-oblivious Next-Fit (NF) algorithm
modified for VM allocation is that page sharing is accounted for in NFS and a search is

performed to find a server which meets the incoming VM request. The standard sharing-

www.manharaa.com

83

S1:{V1, V2, V3} S2 1 {Va}

25

Figure 4.2: NFS: VM Assignment

oblivious NF algorithm has a runtime of O(1) when allocating a VM request to servers,
where each server has the same initial resource type capacities. In the case of NFS, the
run time increases due to the search for the next server which can host Vj; resulting in a
run time of O(M) in the worst case, where M is the number of servers under management.
Lastly, allocating V; requires searching for page sharing relative to only one active server Sj
as described in Section 4.2, thus resulting in a total run time of O(NM) for NFS.

Figure 4.2 illustrates the assignment of VMs to servers according to NFS for the SA-
OVMP instance presented in Figure 4.1. All six VMs are assigned sequentially from V; to V.
VMs Vi, V5 and V3 are assigned to Si; which is initially active. When V} arrives, it cannot
be assigned to S; due to over-committing the CPU capacity. Server S is then closed, S,
is found to satisfy Vj’s resource request at which time S; is activated and V} is assigned
to it. Next, V5 arrives and cannot be assigned to S5 due to over-committing the memory
capacity. Server S, is then closed, S5 is found to satisfy V3’s resource request at which time
S is activated and V5 is assigned to it. Lastly, V5 arrives and cannot be assigned to S3 due
to over-committing the storage capacity. Server Ss is then closed, Sy is found to satisfy Vj’s
resource request at which time S, is activated and Vj is assigned to it. NFS requires all four

servers in order to assign the VMs. For the SA-OVMP problem instance considered here, the

www.manaraa.com

84

Algorithm 6 FFS
: Input: VM instance arrival (V})
k0
flag + 1 i
if (|C7", C¥, C2| — g — %, ¢}, ¢i] > [0, 0, 0]) then
flag < 0
break
kek+1
if (flag) then
while (k < |S|) do
if ([C7", CF, CF] — l4)" — sf, qj, ¢;] > 10, 0, 0]) then
activate(S;)
S« S\ {s;}
break
kek+1
. if (k > |S|) then
exit
0 ;. S u{V;})
G gl e (0P, 6 Gl - L — sk g

[T = T = T S =y
NPT R

H
%

sharing-oblivious NF implementation would also require all four servers to assign the VMs;
albeit, more memory would be consumed on server S;.
4.3.2 First-Fit-Sharing (FFS) Algorithm

We now introduce the FFS algorithm which is similar to NFS except that servers are
never closed when a VM request cannot fit into a server. Rather, any server that cannot
accommodate the current VM request will remain active in anticipation of another VM
request which can be accommodated. FFS is given in Algorithm 6 and works as follows.

Upon arrival of VM request Vj, a search ensues to determine the first active server S;
from the set of active servers S\ S, which has enough capacity for every resource type to host
V; while considering memory sharing in the amount of sf . To simplify the description of the
algorithm, we assume that all active servers are placed before any of the inactive servers in
the search sequence. The algorithm executes a while loop to search for the first active server
S; that meets V}’s resource demand in consideration of memory sharing (line 4). If a suitable
server is found among the active servers, then flag is set to 0, and the algorithm leaves the

while loop (lines 5 - 7). Else, the search continues within the while loop by incrementing

www.manharaa.com

85

SV, Va, V3, Vet Sa i {Va}

OO0
©]0]0)
O
o

Figure 4.3: FFS: VM Assignment

server index k until a server with enough resources to host V; is found (line 8). If there
are no active servers which can host Vj, flag is still 1, signalling the need to search for a
suitable server among the set of inactive servers. The search process among the inactive
servers (lines 10 - 15) is similar to NFS (Algorithm 5, lines 8 - 16) except that upon reaching
the flag if condition, server index k has already been incremented to the first inactive server.
If is greater than the number of available servers in the active or inactive server search, the
algorithm exits (lines 16 - 17). If a suitable server S; has been found from either the active
or inactive servers, V; is assigned to S, and S;’s resource capacities are reduced accordingly
(lines 18-19).

The difference between FFS and the standard sharing-oblivious First-Fit (FF) algo-
rithm modified for VM allocation is that page sharing is accounted for in FFS and a search
for a server which meets the incoming VM request is performed. FFS undergoes the same
fingerprinting process mentioned in Section 4.2 to determine similar pages (taking O(N)
time) and searches for either the first active server which meets the VM resource request
over the set of active servers, or determines the first inactive server to activate in order to
satisfy the VM resource request. Since the run time of the search can be at most O(M),

FFS has a run time complexity of O(NM) for allocating one VM request.

www.manharaa.com

86

In Figure 4.3, we present the assignment of VMs using FFS for the SA-OVMP instance
from Figure 4.1. VMs Vj, V5 and V3 are assigned to Sp; which is initially activated. When V
arrives, it cannot be assigned to &) due to over-committing the CPU capacity. Server Ss is
found to satisfy V}’s resource request at which time server Sy’s state is changed from inactive
to active and V} is assigned to it. Next, V5 arrives and cannot be assigned to either S; or S,
due to over-committing the CPU capacity. Server Ss is found to satisfy V;’s resource request
at which time server S3’s state is changed from inactive to active and Vj is assigned to it.
Lastly, Vi arrives and according to the search, Vs can be assigned to Sy since it is still in an
active state. By consolidating the VM request to an already activated server which was not
closed, FFS activates fewer servers, and thus, achieves better performance than NFS.
4.3.3 Best-Fit-Sharing (BFS) Algorithm

In order to design BFS, we introduce the server resource scarcity metric which charac-
terizes the scarcity of aggregate resources at a given server relative to the requested resources
by a VM. The classical sharing-oblivious Best-Fit (BF) packing algorithm places a new item
into the bin with the least remaining current capacity according to one dimension, i.e., the
size of the item in one dimension. Since the SA-OVMP problem considers multiple resource
requirements, we have to consider all required resources and available capacities when de-
termining the appropriate server for allocating the VM request. To be able to achieve

this, we define the server resource scarcity metric as follows:

(
g — sk ¥ g3 .
max{ﬂT \M,C—%,C—% 1fC’,’c”—q;"+S§ZO&

Ct—qgv >0 &
Crp — j >0
0 otherwise

\

The metric characterizes the scarcest resource among all resource types from server Sy
relative to Vs resource requirements. Each resource request type is expressed as a remaining

resource ratio in Equation 4.3 relative to the available server capacity type, if V; were to

www.manharaa.com

87

be instantiated on S;. These ratios are only relevant if the V;’s resource requests do not
over-commit any of the resource capacities on server S;. The maximum remaining resource
ratio among the three resource types reflects the scarcest remaining resource after server Sy
instantiates VM V. In Equation 4.3, sharing influences the memory request by \/g instead
of s;? in the numerator. This way we avoid situations where VM V; has a sizable memory
request which shares a significant amount of pages with already hosted VMs making the
memory resource appear less scarce when compared to the other resources. Lastly, if V}’s
resource demand over-commits any of the server Si’s capacities, then the value of the server
resource scarcity metric will be 0 indicating an absence of opportunity to assign V; to Sj.
BFS is given in Algorithm 7 and works as follows. Upon the arrival of VM request
V;, a search ensues to determine the active server S; € S\ S which would have the least re-
maining single resource after instantiating VM V; (i.e., the scarcest resource). The algorithm
calculates the resource scarcity metric for each server in the set of active servers through a
while loop (line 4). If at least one active server has enough resource capacities to meet the
V;’s resource demand (line 5), then flag will be set to 1, which guarantees that V; will be
assigned to one of the active servers, and the V; resource scarcity metric is calculated relative
to Sy (lines 6 and 7). Else, at least one of the resource requests violates at least one of the
current active server capacities, and then the server resource scarcity metric would be 0 for
those servers (line 9). Calculating the resource scarcity metric among the active servers con-
tinues within the while loop by incrementing server index k until the first inactive server is
found (line 10). If flag is set to 1 following the while loop, then the index of the server with
the maximum resource scarcity metric is determined and stored in k (line 12). If no active
servers have enough resources available to host V; according to resource scarcity metric, then
a search for a suitable server among the set of inactive servers occurs (lines 14 - 21) exactly as
in FFS (Algorithm 6, lines 10 - 17). Lastly, VM V; is then assigned to server S; which would
have the least remaining resource following instantiation and server S}’s resource capacities

are reduced according to V;’s resource demand (lines 22 - 23).

www.manharaa.com

38

Algorithm 7 BFS

X

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

Input: VM instance arrival (V)
k<0
flag+ 0
it (Cp, o, O3 — [q — 5%, g%, ¢5] > [0, 0, 0]) then
flag + 1
[k
! cr oGy
else
ef 0
kek+1

if (flag) then
k argmax{ef}
else
while (k < |S|) do
if (|C7, C¥, C3| — |qf* — s}, 4, ¢§] = [0, 0, 0]) then
activate(S;)
5+ S\ {5}
break
ke k+1
if (k> |S|) then
exit
Sp S UiVt
[Clzgnv C]%Lv Cfi] — [C’Zn, C};: C]::] - [q;n - 5?7 Q;‘La q]s]

There are several differences between BFS and the sharing-oblivious version of the

BF algorithm. From a general point of view, BF assigns items into bins based on the least

remaining space after item placement. When considering BF for VM allocation, the algorithm

would only account for a single resource. When multiple resources are considered, BF can

have several interpretations for allocating VMs to servers based on various resources. BFS is

more precise in that it is guided by the least remaining resource among all resources identified

by the metric in Equation 4.3. Another difference is that BFS accounts for page sharing

within each server when allocating the incoming VMs, whereas the standard BF algorithm

does not. Provided the similarities between BFS and FFS, the run time complexity of BFS is

also O(N M), which includes calculating the resource scarcity metric for any incoming VM

relative to the available, active servers.

www.manharaa.com

S1: {0} Sy {0}

00O 00
st oo g oar o 88 e
S, 0 020 | 16 8 8 00 oJe)
Sy 0 033312 8 4
S 0 05 |12 6 2 Sy : {0} Sy {0}
S, 0 1.000| 8 4 1

oJ®

OO 00

OO0 0O

Figure 4.4: BFS: Init

Slt{@} Sg{@}

00 00
.osh o |G ¢ 88 50
S, 0 037 |16 8 8 oe 00
S, 0 050012 8 4
Sy 0 050012 6 2 Sz : {0} Sy {V1}
S, 0 0.000] 4 3 0

oJ®

00 00

OO QO

Figure 4.5: BFS: VM 1 Assignment

We now illustrate the assignment process of BFS using the SA-OVMP instance from
Figure 4.1. Figures 4.4, 4.5, and 4.6 illustrate the process for VMs V; through V3. The

k

amount of sharing, s’f, and the server resource scarcity metric, ey, are calculated relative

to V; and the servers within the configuration. Since there are no VMs assigned to the
server, s% is zero and a server which will leave the least amount of a single resource following
instantiation is selected (i.e., the best fit server). Server S, has the highest value for the
resource scarcity metric since the resource capacities are lower than the rest of the servers.
Therefore, V) is assigned to Sy and S,’s capacities are reduced accordingly and updated.
Next, V5 is ready for instantiation. All sg, are 0 since no pages are shared with Vj.
The server resource scarcity metric is the same for both S5 and S3. The resource which will

yield the least remaining space per our metric is the memory, where both Sy and Sz offer

the same memory capacities., To break the tie, we select the lowest indexed server with the

www.manaraa.com

Slt{@} SQZ{VQ}

00 00
vi s Jor o o 38 ®0
S, 0 031316 8 8 00 [Yo
Sy 2 07741 6 6 3
S; 0 1.000 | 12 6 2 Sz : {0} Sy {V1}
S, 3 0000| 4 3 0

00

o)) o))

o)) Q@0

Figure 4.6: BFS: VM 2 Assignment

Sli{m} SQZ{VQ}

00 00
i i ar oo o 38 o0
S, 0 062516 8 8 00 [Ye!
S, 2 0942| 6 6 3
Sy 4 0000 7 5 0 Sz {V3} Sy {1}
S, 3 0000| 4 3 0

00

o)) 00

@0 Q@0

Figure 4.7: BFS: VM 3 Assignment

highest server resource scarcity metric, e.g., Ss, to host V5 and the resource capacities of
S, are updated. Relative to server Sy, €5 = 0 since there is not enough memory available.
Next, V5 is ready for instantiation. With V; assigned to S, and V5 assigned to S, V3 has
two opportunities to share pages, leading to s§ =2 and s5 = 3. Upon calculating the server
resource scarcity metrics, it is determined that V3 should be assigned to S5 due to the scarcity
of storage which occurs following instantiation against the other servers.

The BFS assignment for VMs V; through Vs are illustrated in Figures 4.7, 4.8 and
4.9. VM V, will be assigned to Sy due to the CPU resource being the most scarce resource
following instantiation when compared to S;. The assignment of Vj to server S is by default
since the other servers do not have enough CPU capacities to instantiate the request. Lastly,

Vs arrives and due to both the CPU requests, the resource scarcity metric has a value of 1.0

www.manaraa.com

Sy {0}
oJo)
Vi sk o oor g 88
S; 0 0.438| 16 8 8 oo
Sy 4 0000 2 1 2
Sy 2 0000 7 5 0 Sz {Vs}
S, 2 0000| 4 3 0
00
o)) o))
@O Q@0
Figure 4.8: BFS: VM 4 Assignment
Sy {Vs}
oJo)
Vo ss b |G CGf G 88
S, 0 0627 8 7 6 00
S, 4 1000| 2 1 2
Sg 2 0000 7 5 0 Sz {V3} Sy {1}
S, 2 0000| 4 3 0
00
o)) o))
@O Q@0
Figure 4.9: BFS: VM 5 Assignment
St} So : {Va, Vy, Vg }
OO ‘
OO
OO
o0
SS{V@} 54:{ }
OO
OO 0JO,
@O 0J©)

Figure 4.10: BFS: VM Final Assignment

relative to Sy which is the largest. Thus, Vg is assigned to S;. The final VM assignment for

the SA-OVMP instance considered here is illustrated in Figure 4.10.

www.manaraa.com

92

4.3.4 Worst-Fit-Sharing (WFS) Algorithm

Since WFS can be viewed as the dual of BFS and thus, its structure and implementa-
tion are nearly identical to that of BFS, we will not provide a formal algorithmic description
of it. The only difference between the two algorithms is that WFS allocates the new VM
request to an active server with the minimum server resource scarcity metric, i.e., assigns the
VM to the server which leaves the most remaining single resource following instantiation.
WEFS requires a change from argmax{e’} to argmin{e’} in BFS (line 11) and the maximum
operator in Equation 4.3 is changed to the minimum operator. Due to the similarity to BFS,
the run time complexity of WFS is also O(NM).
4.4 Offline Sharing-Aware VM Packing

In this section, we present a multilinear programming formulation of the “offline”
Sharing-Aware VM Packing problem. This problem differs from the online version in Sec-
tion 4.2 since it assumes that the set of VM requests, V, is known a priori. In order for a
solution to exists, we have to guarantee that enough servers are available to host all V; € V.
The objective of the service provider is to host all V; € V, while minimizing the number
of active servers necessary for instantiating the VMs in V. We formulate this problem as a
multilinear boolean program in Equations 4.4 through 4.10

A boolean decision vector y € {0,1}* is the solution to our program from Equa-
tion (4.4); where the active servers are identified by y, = 1, inactive servers are identified
by yr = 0, and B is the sum of the total number of active servers over all components of y.
The constraint in Equation (4.6) ensures that V; is not assigned to more than one server,
where z;;, reflects the assignment of VM V; to a single server Si. Equation (4.7) is a re-
source capacity constraint which ensures that the subset of instantiated VM requests do not
violate the server capacities, (), the provider has available in terms of CPUs, r = u, and
storage, r = s. Equation (4.8) is the memory capacity constraint and ensures that the VMs
requesting memory do not violate the service provider’s memory capacities which considers

the effect of page deduplication. Equations (4.9) and (4.10) ensure decision variables y; and

www.manharaa.com

93

S1:{Vi, Ve, } So 1 {V3, Vi, Vs}

0000
Q00O

=
o

Figure 4.11: Optimal V ssignment

x ;1 are boolean.

minimize: B = g Yk

k:SLES

subject to:

Z rjp=1Vj:V; eV
k:SkeS

> G <uCp, Yk S €S, VreR
j:V;ev

> (D)W e s T 23 < wCy, Yk S €8
TEP(V) jeg
Y Tk € {0, 1}

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Figure 4.11 shows the solution of our multilinear program for the SA-OVMP instance

from Figure 4.1. The optimal solution packs VMs V; through Vj onto two servers, leading to

a lower number of active servers than any of the online algorithms proposed in Section 4.3.

The novelty of our multilinear program formulation is in how the memory constraint takes

into account the memory requests with regards to page sharing. To describe the constraint,

we consider an example using VMs V3, V; and Vi and server S,.

In Equation (4.8), we denote by P(V), the power set of the set of available VMs, V,

and index the elements from this power set using J. We define the sharing parameter oy

as the variable which represents the number of shared pages among the VMs in set J. As

an example, for |J| = 3, we have o346 = 3, i.e., all VMs in J which include V3, V; and

www.manharaa.com

94

Vs share 3 pages between them. We calculate the sharing parameter o for all the sets of
the power set P(V) indexed by J, and organize them by cardinality in Figure 4.12. When
| 7| = 1, the sharing parameter o represents the amount of memory resource in number
of pages requested by Vj, i.e., 0; = ¢;". By combining the set of values representing the
number of shared pages and the number of pages required by each VM, we can deduce the
number of unique pages, i.e., pages which are required to instantiate a subset of VMs and are
available to be shared among requesting VMs. To calculate the number of unique pages in
equation (4.8) we need to introduce an adjustment parameter, (—1)7*1 which adjusts the
calculation of the number of unique pages according to the cardinality of J. By referencing
Figure 4.12, we can calculate how many unique pages are required in order to instantiate

VMs Vi, V; and Vs and compare this to Sy’s memory capacity, C5", as follows,

(+1)(0'3 + o4 + 06) + (—1)(0‘34 + o036 + 0'46) + (+1)(0346) < Cén (4-11)

By substituting the values for o7 from Figure 4.12 and performing the calculation
above in Equation 4.11, we arrive at 8 unique pages which are required to allocate Vs, V}
and Vg, when sharing pages is considered; consistent with the number of colored pages in
Figure 4.12. In most cases, only a subset of the VMs may be chosen for instantiation based on
the service provider’s memory resource. Therefore, the constraint in Equation (4.8) consists
of the product of boolean decision variables, x5, where j is an index corresponding to any
VM V; within the VM subset combination J, on the sharing parameter o7, and the unique
page adjustment parameter (—1)(|‘7|+1).

In order to optimally solve the “offline” Sharing-Aware VM Packing problem, we use
the AMPL [30] mathematical programming framework and an open-source solver, Couenne (8],
which employs a branch & bound algorithm for solving mixed integer nonlinear programs
in general; which is applicable to solving our multilinear program. The “offline” Sharing-
Aware VM Packing problem is a new and more complex variant of the bin packing and

extends characteristics from the set-union bin packing problem initially considered in Tang

www.manharaa.com

95

SQ : {V37 V47 ‘/6}

T =1||TJ|=2]|J|=3
.0'3:5 .0'34:4 .0'346:3
.0'4:6 .0’3623
.0626 .046:5

Figure 4.12: Sharing parameter values among V3, V, and Vg

and Denardo [93]. Since bin packing and its variants are strongly NP-hard, we infer that
our “offline” Sharing-Aware VM Packing problem is also strongly N"P-hard. Therefore, solv-
ing the “offline” Sharing-Aware VM Packing problem is only practical for small problems.
Solving the “offline” version of the SA-OVMP problem instance in Figure 4.1 only takes a few
seconds; although, when we increased the number of VMs to 15 and the number of servers
to 8, the time required to solve the problem was approximately 22 minutes. Therefore,
heuristic methods, such as those described in Section 4.3, are required in order to efficiently
solve problem instances with a large number of VMs and servers considered in real-world
applications.
4.5 Experimental Results

In this section, we describe the experimental setup including our strategy for generat-
ing VM streams, simulating server configurations, and modeling page sharing. We perform
extensive experiments with our sharing-aware online algorithms and their sharing-oblivious
counterparts and then analyze the results.
4.5.1 Experimental Setup

All software used for the experiments is implemented in C+-+ and is run on 2.93

GHz Intel hexa-core dual-processor 64-bit systems within the Wayne State University HPC

www.manharaa.com

96

Low Resource Request VMs in Experiments High Resource Request VMs in Experiments
Resource {nlsl} {nls2} {nlc2} {n1m2} {nlc4} {nlc8} {nls4} {nim4} {n1s8} {nlm8} {nlsl6} {nlcl6}
Memory (GB) 3.7 7.50 1.80 13 3.6 7.20 15 26 30 52 60 14.40
CPU 1 2 2 2 4 8 4 4 8 8 16 16

Table 4.8: SA-OVMP Experiment: VM Instance Types.

VM Streams

Fairly recently, Google has made workload usage traces from Google compute cells [83]
available to the public. Researchers have thoroughly investigated various components of the
usage traces, such as applications [26] and workloads [67] [81] [59]. Significant to our ex-
periments is the arrival pattern of VM resource requests and how our proposed algorithms
behave under these patterns. Based on existing research [81] [17], it has been concluded that
there are no standard distributions which fit the pattern of VM resource requests. Some
statistical properties have been revealed such as, resource requests exhibiting a heavy-tailed
distribution [81], requests reflecting degrees of fractal self-similarity [17|, and the proportion
of lower memory and CPU requests significantly outweigh higher memory and CPU requests
within the trace [82|. Given the difficulties in identifying overall arrival and request charac-
teristics from the traces, we design a broad range of VM streams which provide numerous
variations on the mixture of requested VM types, arrival orderings (which is significant for
online settings).

For our experiments, we consider the resource request characteristics from Google
Compute Engine VM types which are listed in Table 4.8 and are available online [38]. We
divide the VMs into two categories, low resource request and high resource request, based
mostly on the memory and CPU request combinations. We keep n1lm2 and nlc8 in the lower
resource category since nlm2 only requests 2 CPUs and nlc8 requests a very low amount of
memory compared to those VMs in the high resource request category. We define a stream as
a sequence of either 500 or 1000 VMs requests which exhibit various percentages of mixture

between low and high VM resource requests. We design a set of VM streams accounting for

www.manharaa.com

97

85% Low Request 1000 VM Stream

nicl6
nisl6

¢ nimg

2 nls8

> nlm4

= nls4

= nlc8

> e '
nic2 { L
nls2 1
nisi 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
VM Arrivals

Figure 4.13: 85% Low Request 1000 VM Stream.

various VM type mixtures in increments of 5%, ranging from 5% low (and 95% high) to 95%
low (and 5% high) resource requests.

Therefore, in order to test the performance of our algorithms, we consider common
and uncommon workloads which span the VM resource request mixtures. For each VM
stream, we randomly select VMs from each of the two requesting categories, until a desired
percentage of mixture is achieved. As an example, for the 85% low request 1000 VM stream,
we select uniformly at random 850 VMs from the low requesting category, leaving 150 VMs
to be selected uniformly at random from the high requesting category in order to complete
the stream. Once all the streams have been designed, we generate five copies of each stream
and identify them by rl through r5. Each rl through r5 stream per mixture combination
is then randomly shuffled using the C-++ facility random _shuffle and the standard uniform
random generator. Each rl through r5 stream is shuffled a different number of times such
that the stream sequences exhibit a fairly significant variability from each other. We account
for 19 mixture combinations with 5 different orderings for each mixture per 500 and 1000 VM
streams; totaling 190 unique VM streams used in our experiments. Figure 4.13 illustrates
a 85% low requesting resource 1000 VM rl stream while Figure 4.14 illustrates a 15% low
requesting resource 1000 VM r2 stream. We show the different VM types on the vertical
axis and the arrival sequence of the 1000 VMs in the stream on the horizontal axis. Stream
rl plot shows that the majority of the VM types correspond to our low resource requests
(approximately 85% of the VM stream). Stream r2 plot shows that the majority of the VM

types correspond to our low resource requests (approximately 15% of the VM stream).

www.manaraa.com

98

15% Low Request 1000 VM Stream

nicl6 1
g i3 |
2 nlsS i
> nimd i
= nis4 M |
S nics M 1
> nlcd i i

nim2 [f I

nic2

nls2

nisi 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
VM Arrivals

Figure 4.14: 15% Low Request 1000 VM Stream.

Server Configurations

Our experiments consider the heterogeneity of a cloud service provider’s back-end
infrastructure, i.e., infrastructure composed of multiple servers with various resource charac-
teristics. Very few details have been revealed about the exact server configurations for major
cloud service providers’ infrastructure. Although, researchers studying the Google workload
usage traces have provided fairly accurate results reflecting the number of and resource char-
acteristics for servers within the compute cell from which the trace set was logged [81] [59]. It
was determined that approximately 12,477 servers were used in hosting the requests captured
in the Google usage trace. Determining the exact capacity specifications for these servers is
not possible due to normalization and obfuscation techniques [84] used within the trace set;
yet, each trace event within the set expresses a request ratio of CPU, RAM normalized to
the largest server configuration (the values of which are not identifiable from the trace set).

Using these ratios, researchers have been able to derive representations for the dis-
tribution of machines and their resource characteristics. Liu et al. [59] categorized these
servers into 15 different capacity groups reflecting variations on (CPU, RAM) combinations,
where each category reflects a percentage of the 12,477 servers. The capacity groups, iden-
tified by a tuple (CPU ratio, RAM ratio), are expressed as combinations of CPU and RAM
server capacity ratios relative to the largest server capacities: .25, .50 and 1.00 for CPU;
125, .25, .50, .75 and 1.00 for RAM. For instance, the capacity group (.50, .25) exhibits
server capacities that are 50% of the CPU resource, and 25% of the memory resource of the

largest machine, and claims 31% of the 12,477 servers, or approximately 3,835 servers. For

www.manaraa.com

99

500 VM Stream Server Configuration 1000 VM Stream Server Configuration
g 48 - [0] [0] 1 [0] 321+ g 48 [0 [0] [1 [0] 64 1
g 24 | [3] [154] [268] [40] [1] . 8 24 | [5] [308] [535] [80] [1] R
& 12F 0B 0 o 0 S 12p [o @ [0O
32 64 128 192 256 32 64 128 192 256
Memory (GB) Memory (GB)

Figure 4.15: Server Configurations.

our experiments, we use the server capacity groups and percentage of group population from
Liu et al. [59], and consider that our largest server has resource capacities of 48 CPUs and
256 GB RAM. We determine all other server capacities relative to these values. We utilize
500 servers for the 500 VM streams and 1000 servers for the 1000 VM streams, where their
grouping and percentage of population is consistent with the results from Liu et al. [59].
Figure 4.15 illustrates the number of servers per group for the 500 and 1000 VM streams.
For example, we consider 308 servers from the (24, 48) category (i.e., servers with 24 CPUs
and 48 GB of RAM). Lastly, we make available the servers with the smallest capacities first
throughout our experiments. In sequence, the server capacity groups ordering corresponds
to: (12, 64), (24, 32), (24, 64), (24, 128), (24, 196), (24, 256), (48, 128) and (48, 256). We
note that only a portion of the server capacity groups were activated in our experiments,
but chose 500 and 1000 servers as the maximum number of servers that can be activated.
Modeling Page Sharing

For our experiments, we abstract a subset of the available software from Google
Cloud Launcher [36] for the Google VM types. The software categories available to VMs
in our experiments are content management, databases, developer tools, infrastructure and
operating systems. Each application software category comprises eight different options, i.e.,
database software options such as MongoDB, MySQL, Cassandra, Redis, etc., as well as ten
operating systems, where four are specific to server versions and six are desktop versions,
i.e., operating system software options such as Ubuntu 15.04, Ubuntu Server 14.04 LTS,

Windows Server 2008 R2, etc. Previous research on page sharing has uncovered that the

www.manharaa.com

100

majority of page sharing occurs between operating systems [86]. Operating systems and their
versions can share a large amount of memory between them; yet, different operating systems
may share almost no memory, e.g., collocating VMs which run Windows and Linux OS
distributions [86]. Page sharing opportunities can be further identified between server and
desktop distributions. In some cases, server distributions do not include desktop packages
and the desktop distributions do not include server related packages; but can share kernel
resources between them, e.g., Ubuntu 12.04 merges linux-image-server into linux-image-
generic.

We model the memory pages requested by applications and OSs using boolean vectors.
Each application or OS memory request is characterized by such a vector. The entries of
the vectors represent memory pages, where an entry with value 1 signifies that the page
represented by that entry is requested, while an entry with value 0 signifies that the page
is not requested. Extensive effort has been exerted to build unique vectors reflecting the
operating systems and applications memory requirements such that the sharing outcomes
are fairly consistent with the results presented by Sindelar et al. [86] and Bazarbayev et
al. |7]. For each VM in our experiments we select uniformly at random one operating system
and one to four applications to run. We constrain some of the VM types to certain operating
system and application combinations, e.g., low request VMs such as nlsl will not choose OS
server distributions since it is unlikely that a user would request a single cpu, low memory
VM to host multiple instances. Each server memory pages are also modelled by a boolean
vector which is populated with the corresponding entries from the application and OS vectors
of the VMs hosted by the server. Once a VM has selected its software combination vectors
and a server is identified to host the VM, the VM’s vectors are compared to the server’s

vector to determine the pages that can be shared.

4.5.2 Analysis of Results
We now compare the performance of our proposed sharing-aware online algorithms

sharing-oblivious counterparts. Specifically, we show that by

www.manharaa.com

101

30%

(12,64) = (24,64)
< 2505 (24, 32) 1 (24,128) /=
S 20% -

(&)
>
D 15%
o
>
c 10% -
]
()
= 5% -
0% | |

BFS WFS

Figure 4.16: Average Memory Reduction: 500 VM Stream.

using our sharing-aware online algorithms the average number of activated servers is lower,
and a substantial memory reduction occurs, which frees up resources for more VMs to be
packed. We also analyze some worst-case scenarios for the two sets of algorithms.

In Figure 4.16 and Figure 4.17, we compare the average amount of memory reduction
obtained when utilizing the sharing-aware over the sharing-oblivious algorithms for various
server capacity categories and for 500 and 1000 VM streams, respectively. We compare our
sharing-aware algorithms, NFS, FFS, BFS, and WFS with sharing-oblivious algorithms, Next-
Fit (NF), First-Fit (FF), Best-Fit (BF), and Worst-Fit (WF). The server capacity categories
that we sample are identified by a tuple (CPU, RAM). For instance, the server capacity
category (24, 64) consists of the server capacity category which includes servers with 24
CPUs and 64 GB RAM. Along the horizontal axis for each sharing-aware algorithm we
show the memory reductions for the following server capacity categories: (12, 64), (24, 32),
(24, 64) and (24, 128). We note that only in very few instances servers outside of these
categories were activated during our experiment. Along the vertical axis are the percentages
of memory reduction obtained by our algorithms when compared with their sharing-oblivious
counterparts.

Quantifying the sharing directly was not straightforward as the sharing-aware and

sharing-oblivious algorithms assigned different VMs to different servers. Therefore, we com-

www.manharaa.com

102

25%

(12,64) mmmm (24,64)
(24,32) —= (24,128) ==

N

S

>
L

15% +

10% +

5% -

Memory Reduction (%)

0% ||
NFS FFS BFS WFS

Figure 4.17: Average Memory Reduction: 1000 VM Stream.

pare the overall memory utilization between each sharing-aware algorithm and its sharing-
oblivious counterpart. For both 500 and 1000 VM streams, all the sharing-aware algorithms
tend to exhibit the greatest memory reduction on the server group with the largest amount
of memory, i.e., (24, 128). This is because servers that offer more memory can accommodate
more VMs as long as CPUs are available. When the number of assigned VMs increases, so
does the opportunity to share pages, which leads to more VMs being assigned to the server,
if sharing-aware algorithms are utilized. Lastly, when comparing the results for the 500 VM
streams and the 1000 VM streams, we note that the 500 VM stream tends to generate the
larger reductions for the (24, 128) case. From our results, the sharing-aware algorithms can
reduce the required memory by approximately 25% in the best case for the largest server
capacity category, i.e., (24, 128), and can reduce the required memory by approximately 5%
for the worst case in the smallest server capacity category, i.e., (12, 64).

In Figure 4.18 and Figure 4.19, we show the number of servers activated by the
sharing-oblivious algorithms in excess of those activated by our sharing-aware algorithms.
We call these servers, the excess servers. In the plots, the sharing-oblivious algorithms have
five bars, one for each resource mixtures ranging from 65% to 85% in increments of 5%. For
each of the requesting resource mixtures, we plot the number of excess servers the sharing-

oblivious algorithms required over that required by the sharing-aware algorithms. On the

www.manaraa.com

103

20

65% mmmm 70% 1 75% mmmm 80% 1 85%

15+

10 -

Number of Excess Servers

NF:(24,128) FF:(24,64) BF:(24,64) WF:(24,64)
Figure 4.18: Excess Active Servers: 500 VM Stream.

45
40
35
30 4
25
20
15 -
10 -
5_

65% mmmm 70% [75% mmmm 80% [85%

Number of Excess Servers

NF:(24,64) FF:(24,64) BF:(24,64) WF:(24,64)

Figure 4.19: Excess Active Servers: 1000 VM Stream.

horizontal axis, for each sharing-oblivious algorithm we show the server capacity category
which was found to exhibit the greatest differences.

We note that in Figure 4.18, NF exhibited the greatest differences for a different
server capacity category, (24, 128), from the other algorithms in the experiment. For the
VM 500 stream, NF filled most of the (24, 64) category servers. When comparing NF to
NFS in the (24, 64) category, they were nearly identical. The greatest variance between the
two algorithms in terms of the greatest number of excess active servers occurred in the next
largest server capacity category, (24, 128). In the worst cases for the VM 500 stream, BF

for (24, 64) and FF for (24, 64) at resource mixture 70%, required 16 to 17 extra servers

www.manaraa.com

104

Average Number of Active Servers: Sharing-Aware vs. Sharing-Oblivious Algorithms Over 500 VM Stream

NFS-276 268 260 252 244 236 229 219 208 197 187
NF-280 271 263 255 248 239 232 224 211 201 191 181
FFS235 227 219 208 200 192 184
FF4246 237 228 218 208 200 191 183
BFS-237 228 221 211 202 194 186 178
BF-246 237 230 219 210 202 194 185
WFS-237 228 222 211 203 195 187 178
WF-246 237 230 219 210 202 194 185

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Figure 4.20: Average Active Servers Over All 500 VM Streams.

when compared to our sharing-aware algorithms. The variability of excess servers in the
case of BF for (24, 64), is not as pronounced as in the case of FF for (24, 64) among the
represented resource mixtures. This implies that the difference in performance between FF
and FFS is smaller than in BF and BFS for the worst cases. The results for the VM 1000
stream are fairly similar in dynamics to the ones for the VM 500 stream, with the largest
excesses occurring in the case of FF for (24, 64) with resource mixture 70%; accounting for
38 extra servers. From the results of our experiments, we conclude that the sharing-aware
algorithms obtain a significant reduction of the number of active servers which implicitly
leads to a significant reduction of the costs for the cloud provider.

In Figure 4.20 and Figure 4.21, we compare the average number of servers required
to host the VMs for the 500 and 1000 VM streams, respectively, over the entire range of
low-high requesting resource mixtures. Along the vertical axis are the acronyms for each
of the sharing-aware and sharing-oblivious algorithms and along the horizontal axis are the
percentages of low resource requesting VMs in the VM stream. The heat map representation
has the darkest shade of gray when the highest number of servers are used, e.g., for the 500
VM stream the maximum value is 280 by NF, and has the lightest shade of gray when the
lowest number of bins are used, e.g., a minimum value of 77 by FFS also for the 500 VM
stream. The average number of servers are calculated by aggregating the number of active

servers from VM streams rl through r5 for each requesting resource mixture, dividing by

www.manharaa.com

105

Average Number of Active Servers: Sharing-Aware vs. Sharing-Oblivious Algorithms Over 1000 VM Stream

NFS-553 537 520 504 485 467 448 430 409 389 369
NF-1560 542 526 512 492 472 455 436 418 399 381 360
FFS1470 451 434 417 399 381 366
FF1491 472 453 436 417 399 380 363
BFS-472 454 438 422 403 386 369 353
BF1491 473 455 440 422 403 386 369
WFS-472 454 438 422 404 386 370 353
WF-491 473 455 440 422 403 386 369

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Figure 4.21: Average Active Servers Over All 1000 VM Streams.

five and calculating the ceiling of the result. The figures show that all the sharing-aware
online algorithms activate fewer servers than their respective sharing-oblivious analogues
in all mixtures. When comparing the sharing-aware online algorithms among themselves,
FFS activates slightly less servers than BFS. WFS tends to over-activate only slightly when
compared to BFS in the lower requesting mixtures. As the number of lower requesting VMs
outweigh the higher requesting VMs in the VM stream, WFS tends to diverge away from the
BFS performance in most cases. Naturally, NFS performs the worst among the sharing-aware
algorithms. Moreover, we find that the greatest differences in both the 500 and 1000 VM
streams occur around the 60% to 85% low resource request VM streams which reflects the
many low and fewer high resource requests found typically in usage traces from the current
cloud service providers.
4.6 Summary

We designed a family of sharing-aware online algorithms for solving the VM Pack-
ing problem. The experimental results showed that our proposed sharing-aware online al-
gorithms activated a smaller average number of servers relative to their sharing-oblivious
counterparts, directly reduced the amount of required memory, and thus, the packing of the
VMs required fewer servers. Future work involves extending our algorithms to environments

with lightweight virtual containers such as Docker containers on the Google Kubernetes in-

www.manharaa.com

106

frastructure, and to streaming frameworks. Determining the theoretical performance bounds

for the sharing-aware online algorithms is another open avenue for future research.

o AJLb

www.manharaa.com

107

CHAPTER 5: CONCLUSION

In this Ph.D. dissertation, we presented our research accomplishments in the design
and analysis of sharing-aware resource management algorithms for virtual computing envi-
ronments. We conclude the dissertation by summarizing our contributions and describing
possible future research directions.

5.1 Summary of Contributions

In Chapter 1, we detailed the concepts which serve as the foundation for under-
standing sharing-aware resource management by including an introduction to virtualization,
an explanation of how page sharing operates, a motivation for formulating page sharing
relationships, and a review of relevant approximation algorithm concepts and models. In
Chapter 2, we addressed the problem of sharing-aware VM maximization, SAVMM, in a
general sharing model by designing a greedy approximation algorithm, G-SAVMM, based on
a new efficiency metric and characterized its worst case performance. We then performed
extensive experiments to evaluate the performance of G-SAVMM against other knapsack-like
VM allocation algorithms. Our results show that G-SAVMM generates higher revenue and
is efficient when compared to the other knapsack-like VM allocation algorithms in our ex-
periments. In Chapter 3, we have addressed the problem of multi-resource sharing-aware
VM maximization, MSAVMM, in a general sharing model. We formulated MSAVMM as a
new multilinear binary program, BMP-MSAVMM, inspired by the 0-1 knapsack formulation
and solved it optimally using small MSAVMM instances. For larger, more realistic MSAVMM
instances, we proposed and designed a greedy approximation algorithm, G-MSAVMM, based
on a new efficiency metric and characterized its worst case performance. In order to evaluate
G-MSAVMM, we detailed unique experiment design strategies through filtering and synthe-
sizing Google cluster workload traces while modeling page sharing behavior using existing
results from the literature. To demonstrate the increase in performance by G-MSAVMM, we
compared it with the performance of several other knapsack-like VM allocation algorithms

using the filtered and synthesized cluster Google workload traces. Our results show that

www.manharaa.com

108

G-MSAVMM generates much higher revenue and is extremely efficient when compared to the
other algorithms in our experiments. In Chapter 4, we addressed the problem of sharing-
aware online VM packing with multiple resource requirements and heterogeneous server ca-
pacities, SA-OVMP, in a general sharing model. We proposed and designed a family of new
sharing-aware online algorithms which solves SA-OVMP; namely, NFS, FFS, BFS, and WFS.
We introduced a new server resource scarcity metric necessary for designing BFS and WFS
which established cloud server priorities for instantiating online VM requests. We then for-
mulated SA-OVMP as a new multilinear binary program inspired by the 0-1 bin-packing
formulation and have optimally solved it using small SA-OVMP instances. Lastly, we per-
formed extensive experiments to compare the performance of our sharing-aware online VM
packing algorithms to that of their sharing-oblivious counterparts using the Google cluster
workload traces and the PM configurations on which they are derived. Our results show
that the proposed family of sharing-aware online algorithms drastically reduces the number
of required PMs to instantiate the VM streams when compared to their sharing-oblivious
counterparts.
5.2 Future Research Directions

We believe our work will encourage new research in the area of resource management
within virtual computing environments. The possible future directions are presented in the
next subsections.
5.2.1 Analyzing Sharing-Aware Online VM Packing Performance

Our previous work in VM Packing was focused on the design of online sharing-aware
resource management algorithms, investigated their run time complexities and performed ex-
tensive experiments measuring their performance. To extend the work therein, deriving per-
formance bounds for the proposed algorithms using metrics suitable for online environments,
e.g., competitive and relative worst order ratios, remain open problems in the literature.

Competitive ratios have been studied in the research literature and have been used

to characterize the performance of online algorithms in various areas: VM resource manage-

www.manharaa.com

109

ment [3] [57| [88], packet transmission 94|, caching [51|, paging |2] [87| and in generalized
bin packing settings |19] [31]; yet, to the best of our knowledge, no study has focused on
determining competitive ratios for sharing-aware online resource management algorithms.

While the competitive ratio has been used in the research literature to characterize
the behavior of online performance against offline performance, other metrics [12], e.g., Max
/ Max ratio [9], random order ratio [53], etc., have evolved which also gauge performance.
The relative worst order ratio [10] establishes a metric for comparing online algorithms di-
rectly by measuring the performance of two comparable online algorithms on their respective
worst case input sequence. Relative worst order ratios have been studied in the research lit-
erature and have been used to characterize the performance of newly developed bin packing
algorithms [10] [28], applied to the seat reservation [13] and paging problems [11]; yet, to the
best of our knowledge, no study has focused on determining relative worst order ratios for
online resource management algorithms in a virtual computing environment. In some cases,
the relative worst order ratio is a better quality of measure for online algorithms than the
competitive ratio |28|.
5.2.2 Sharing-Aware Algorithms for Container Management

Future trends in virtual resource management must consider new provisioning tech-
niques as enterprises are operating at unprecedented scales and experimenting with next-
generation technologies. While VMs are the dominant medium for machine instantiation
and operating system hosting in clouds, containers are making a popular comeback from
their inception decades ago. Containers are a lightweight alternative to hypervisor-based
virtualization where, unlike hypervisors, containers do not have the overhead of abstract-
ing the PM hardware to virtualize resources. Instead, containers abstract the operating
system kernel, where the kernel can then be split into multiple, nested containers. As a
result, recent studies have shown the efficiency of utilizing containers over standard VM
hypervisor-virtualization [29] |68] [103]. Open source scheduling systems such as Google’s

Kubernetes and Apache’s Brooklyn orchestration framework lead the way for enterprises to

www.manharaa.com

110

reveal new and efficient means of service virtualization. When institutions such as Google
manage 2 billion virtual images weekly, the venue for engineering new algorithms at scale
and for next-generation virtual environments while further conserving resources and meeting
user demand appear to be wide open.

Google’s Kubernetes engineering team has completed pod [40]; a dynamic container
placement procedure within a cluster inspired by knapsack heuristics. Studying the approx-
imability properties of the knapsack heuristic algorithms through pods is an open opportunity
of research for both an online and offline setting. Furthermore, investigating the online con-
tainer to pod packing on compute nodes may be studied to address the unique development
of systems for dynamic cluster management. Lastly, discovering the approximability proper-
ties of bin packing algorithms specific to containers is an open avenue of research. Given the
current industry appeal of containers, extentions of our research to sharing-aware algorithms
in container-based virtualization environments would be a fruitful endeavor.

5.2.3 Sharing-Aware Streaming Resource Management

We envision an opportunity to extend our sharing-aware algorithms onto systems
which consider real-time distributed stream processing. Real-time distributed stream pro-
cessing is increasingly popular due to responding to events as they occur in areas such as
social media, real-time analytics, fraud detection, etc. Apache Storm [90] is an example
of a popular open source real-time distributed stream processing framework suitable for
these tasks. Therefore, minimizing resource consumption therein would be advantageous to
systems which manage these frameworks. In particular, sharing memory resources among
multiple, duplicate data streams would reduce overall system memory utilization. This is
especially useful for applications consisting of streams which have to be pre-allocated with a
specific amount of memory to ensure processing consistency. Very recently, resource-aware
scheduling for real-time distributed stream processing systems have been proposed in the
literature |74]. Therefore, we believe our research can be translated to real-time distributed

stream processing frameworks in order to improve their efficiency.

www.manharaa.com

111

APPENDIX

Journal Publications

J1. S. Rampersaud, L. Mashayekhy, and D. Grosu, “Computing Nash Equilibria in Bimatrix
Games: GPU-Based Parallel Support Enumeration.” [EEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 12, Dec. 2014, pp. 3111-3123.
Paper selected as the Featured Article for the IEEE TPDS December 2014

Issue.

Journal Publications Under Review

R1. S. Rampersaud and D. Grosu, “Sharing-Aware Online Virtual Machine Packing for Het-
erogeneous Environments.” IEEE Transactions on Parallel and Distributed Systems,
2016.

R2. S. Rampersaud and D. Grosu, “An Approximation Algorithm for Sharing-Aware Virtual
Machine Maximization.” IEEE Transactions on Computers, 2016.

Conference Publications

C1. S. Rampersaud and D. Grosu, “Sharing-Aware Online Algorithms for Virtual Machine
Packing in Cloud Environments.” Proceedings of the IEEE 8th International Conference
on Cloud Computing (CLOUD’15), NYC, USA, July 2015, pp. 718-725.

C2. S. Rampersaud and D. Grosu, “Sharing-Aware Resource Management Algorithms for
Virtual Computing Environments.” Proceedings of the IEEE 3rd International Confer-
ence on Cloud Engineering (IC2E’15), Tempe, USA, March 2015, pp. 493-495.

Best PhD Symposium Presentation Runner-Up Award

C3. S. Rampersaud and D. Grosu, “A Multi-Resource Sharing-Aware Approximation Algo-
rithm for Virtual Machine Maximization.” Proceedings of the IEEE 3rd International
Conference on Cloud Engineering (IC2E’15), Tempe, USA, March 2015, pp. 266-274.

C4. S. Rampersaud and D. Grosu, “A Sharing-Aware Greedy Algorithm for Virtual Machine
Maximization.” Proceedings of the IEEE 14th International Symposium on Network

ications (NCA’14), Cambridge, USA, August 2014, pp. 113-120.

www.manharaa.com

112

C5. M. Ahmed, S. Rampersaud, N. Fisher, D. Grosu and L. Schwiebert, “GPU-Based EDF-
Schedulability Analysis for Multi-Modal Real-Time Systems.” Proceedings of the IEEE
15th International Conference on High Performance Computing and Communications
(HPCC’13), Zhangjiajie, China, November 2013, pp. 254-263.

C6. S. Rampersaud and D. Grosu, “Digital Cancellation Event Options in Limit Order Mar-
kets with Automated Liquidity Self-Provisioning.” Proceedings of the IEEE 10th Inter-
national Conference on e-Business Engineering (ICEBE’13), Coventry, UK, September
2013, pp. 38-43.

C7. S. Rampersaud L. Mashayekhy and D. Grosu, “Computing Nash Equilibria in Bima-
trix Games: GPU-based Parallel Support Enumeration.” Proceedings of the IEEE 31st
International Performance Computing and Communications Conference (IPCCC’12),

Austin, USA, December 2012, pp. 332-341.

www.manharaa.com

113

REFERENCES

[1] O. A. Abdul-Rahman and K. Aida, “Towards understanding the usage behavior of
Google cloud users: the mice and elephants phenomenon,” in Proc. IEEE Intl. Conf.
on Cloud Computing Technology and Science, 2014, pp. 272-277.

[2] D. Achlioptas, M. Chrobak, and J. Noga, “Competitive analysis of randomized paging
algorithms,” Theoretical Computer Science, vol. 234, no. 1, pp. 203-218, 2000.

[3] Y. Azar, I. R. Cohen, S. Kamara, and B. Shepherd, “Tight bounds for online vector
bin packing,” in Proc. 45th Annual ACM Symp. on Theory of Computing, 2013, pp.
961-970.

[4] J. D. Bagley, E. R. Floto, S. C. Hsieh, and V. Watson, “Sharing data and services in
a virtual machine system,” in Proceedings of the Fifth ACM Symposium on Operating
Systems Principles, ser. SOSP ’75. New York, NY, USA: ACM, 1975, pp. 82-88.

[5] I. Banerjee, P. Moltmann, K. Tati, and R. Venkatasubramanian. (2013) Esx
memory resource management: Transparent page sharing. [Online|. Available:
https://labs.vmware.com /academic/publications/vmware-white-papers

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, 1. Pratt,
and A. Warfield, “Xen and the art of virtualization,” SIGOPS Oper. Syst. Rev., vol. 37,
no. 5, pp. 164-177, Oct. 2003.

[7] S. Bazarbayev, M. Hiltunen, K. Joshi, W. H. Sanders, and R. Schlichting, “Content-
based scheduling of virtual machines (vms) in the cloud,” in Proc. IEEE 33rd Intl.
Conf. on Distributed Computing Systems, 2013, pp. 93-101.

[8] P. Belotti. (2015) Couenne, an exact solver for nonconvex minlps. [Online|. Available:
https://projects.coin-or.org/Couenne

[9] S. Ben-David and A. Borodin, “A new measure for the study of on-line algorithms,”
Algorithmica, vol. 11, no. 1, pp. 73-91, 1994.

[10] J. Boyar and L. M. Favrholdt, “The relative worst order ratio for online algorithms,”
ACM Trans. Algorithms, vol. 3, no. 2, May 2007.

www.manharaa.com

https://labs.vmware.com/academic/publications/vmware-white-papers
https://projects.coin-or.org/Couenne

114

[11] J. Boyar, L. M. Favrholdt, and K. S. Larsen, “The relative worst-order ratio applied
to paging,” Journal of Computer and System Sciences, vol. 73, no. 5, pp. 818 — 843,
2007.

[12| J. Boyar, S. Irani, and K. S. Larsen, “A comparison of performance measures for online
algorithms.” in WADS, ser. Lecture Notes in Computer Science, vol. 5664. Springer,
2009, pp. 119-130.

[13| J. Boyar and P. Medvedev, “The relative worst order ratio applied to seat reservation,”
ACM Transactions on Algorithms (TALG), vol. 4, no. 4, p. 48, 2008.

[14] D. Breitgand and A. Epstein, “Improving consolidation of virtual machines with risk-
aware bandwidth oversubscription in compute clouds,” in Proc. IEEFE INFOCOM,
2012, pp. 2861 2865.

[15] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: Running commodity
operating systems on scalable multiprocessors,” ACM Trans. Comput. Syst., vol. 15,
no. 4, pp. 412-447, Nov. 1997.

[16] T. Carli, S. Henriot, J. Cohen, and J. Tomasik, “A packing problem approach to
energy-aware load distribution in clouds,” CoRR, vol. abs/1403.0493, 2014. |Online].
Available: http://arxiv.org/abs/1403.0493

[17|] S. Chen, M. Ghorbani, Y. Wang, P. Bogdan, and M. Pedram, “Trace-based analysis
and prediction of cloud computing user behavior using the fractal modeling technique,”
in Proc. IEEFE Intl. Congress on Big Data, June 2014, pp. 733-739.

[18] CISCO. Cisco Global Cloud Index: Forecast and Methodology. |Online|. Available:
http://newsroom.cisco.com/press-release-content?articleld—1724918

[19] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo, “Bin packing
approximation algorithms: Survey and classification,” in Handbook of Combinatorial

Optimization. Springer New York, 2013, pp. 455-531.

www.manharaa.com

http://arxiv.org/abs/1403.0493
http://newsroom.cisco.com/press-release-content?articleId=1724918

115

|20] E. Coffman Jr., M. Garey, and D. Johnson, “Approximation algorithms for bin-packing:
An updated survey,” in Algorithm Design for Computer System Design, ser. Interna-
tional Centre for Mechanical Sciences. Springer Vienna, 1984, vol. 284, pp. 49-106.

[21] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Almost optimal virtual machine
placement for traffic intense data centers,” in INFOCOM, 2013, pp. 355-359.

[22] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling. New York,
NY: Addison-Wesley, 1967.

[23] M. Cordero, L. Correia, H. Lin, V. Thatikonda, R. Xavier, and S. Vetter, IBM Pow-
erVM Virtualization Introduction and Configuration. IBM Redbooks, 2013.

[24] J. Czyzyk, M. Mesnier, and J. More, “The neos server,” IEEE J. Computational Sci.
Eng., vol. 5, no. 3, pp. 68-75, Jul 1998.

[25] G. B. Dantzig, “Discrete-variable extremum problems,” Operations Research, vol. 5,
no. 2, pp. pp- 266-277, 1957.

[26] S. Di, D. Kondo, and C. Franck, “Characterizing cloud applications on a Google data
center,” in Proc. 42nd Intl. Conf. on Parallel Processing, Oct. 2013.

[27| D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial, “No justified
complaints: On fair sharing of multiple resources,” in Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ser. ITCS ’12. New York, NY, USA:
ACM, 2012, pp. 68-75.

[28] L. Epstein, L. M. Favrholdt, and J. S. Kohrt, “Comparing online algorithms for bin
packing problems,” Journal of Scheduling, vol. 15, no. 1, pp. 13-21, 2012.

[29] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” IBM Research
Report RC25482 (AUS1407-001), vol. 28, p. 32, 2014. |Online|. Available:
http://www.research.ibm.com/

[30] R. Fourer, D. M. Gay, and B. Kernighan, AMPL: A Mathematical Programming Lan-

guage. Duxbury Press / Brooks / Cole Publishing Company, 2003.

www.manharaa.com

http://www.research.ibm.com/

116

[31] M. R. Garey, R. L. Graham, and J. D. Ullman, “Worst-case analysis of memory allo-
cation algorithms,” in Proceedings of the Fourth Annual ACM Symposium on Theory
of Computing, ser. STOC '72. New York, NY, USA: ACM, 1972, pp. 143-150.

[32] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[33] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Domi-
nant resource fairness: Fair allocation of multiple resource types,” in Proc. §th USENIX
Conf. on Networked Systems Design and Implementation, 2011, pp. 323-336.

[34] P. Gilmore and R. Gomory, “A linear programming approach to the cutting stock
problem,” Operations Research, vol. 9, pp. 849-859, 1961.

[35] R. P. Goldberg, “Survey of virtual machine research,” IEEE Computer, vol. 7, no. 9,
pp. 34-45, Sep. 1974.

|36] Google. (2015) Cloud laucher. |Online|. Available:
https://cloud.google.com /launcher/explore

[37] —. (2015) Google cloud storage. [Online]. Available:
https://cloud.google.com /storage/docs/overview

[38] ——. (2015) Google compute engine pricing. [Online|. Available:
https://cloud.google.com/compute/pricing

[39] ——. (2015) Kubernetes. [Online|. Available: http://kubernetes.io/

[40] —. (2015) Pods. [Online]. Available:
http://kubernetes.io/v1.1/docs/user-guide /pods.html

[41] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese, G. M. Voelker, and
A. Vahdat, “Difference engine: Harnessing memory redundancy in virtual machines,”
Commun. ACM, vol. 53, no. 10, pp. 8593, Oct. 2010.

[42| F. Hao, M. Kodialam, T. Lakshman, and S. Mukherjee, “Online allocation of virtual

machines in a distributed cloud,” in Proc. IEEE INFOCOM, April 2014, pp. 10-18.

www.manharaa.com

https://cloud.google.com/launcher/explore
https://cloud.google.com/storage/docs/overview
https://cloud.google.com/compute/pricing
http://kubernetes.io/
http://kubernetes.io/v1.1/docs/user-guide/pods.html

117

[43] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker,
and I. Stoica, “Mesos: A platform for fine-grained resource sharing in the data cen-
ter,” in Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’11. Berkeley, CA, USA: USENIX Association, 2011, pp.
295-308.

[44] P. Hsieh. (2004) Hash functions. [Online]. Available:
http://www.azillionmonkeys.com/qed /hash.html

[45] B. Jenkins. (1997) Jenkins hashing. [Online]. Available:
http://www.burtleburtle.net /bob/hash /doobs.html

[46] M. Jeyakanthan and A. Nayak, “Policy management: leveraging the open virtualization
format with contract and solution models,” IEEE Network, vol. 26, no. 5, pp. 22-27,
September 2012.

[47] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allocation: Fairness-
efficiency tradeoffs in a unifying framework,” in Proceedings of IEEE INFOCOM,
March 2012, pp. 1206-1214.

[48] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-case
performance bounds for simple one-dimensional packing algorithms,” SIAM Journal
on Computing, vol. 3, no. 4, pp. 299-325, 1974.

[49] D. S. Johnson, “Fast allocation algorithms,” in IEEE Conference Record of 13th Annual
Symposium on Switching and Automata Theory, 1972. 1EEE, 1972, pp. 144-154.

[50] S. Kamali and A. Lopez-Ortiz, “Efficient online strategies for renting servers in the
cloud,” in SOFSEM 2015: Theory and Practice of Computer Science, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2015, vol. 8939, pp. 277-288.

[51] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, “Competitive snoopy
caching,” in Foundations of Computer Science, 1986., 27th Annual Symposium on,
Oct 1986, pp. 244-254.

[52] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 2004.

www.manharaa.com

http://www.azillionmonkeys.com/qed/hash.html
http://www.burtleburtle.net/bob/hash/doobs.html

118

[53] C. Kenyon, “Best-fit bin-packing with random order,” in Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and
Applied Mathematics, 1996.

[54] C. Kleineweber, A. Reinefeld, and T. Schiitt, “Qos-aware storage virtualization for
cloud file systems,” in Proc. 1st ACM Intl. Workshop on Programmable File Systems,
2014, pp. 19-26.

[55] P. J. Kolesar, “A branch and bound algorithm for the knapsack problem,” Management
Science, vol. 13, no. 9, pp. 723-735, 1967.

[56] T.-C. Lai, “Worst-case analysis of greedy algorithms for the unbounded knapsack,
subset-sum and partition problems,” Oper. Res. Lett., vol. 14, no. 4, pp. 215-220, Nov.
1993.

[57] Y. Li, X. Tang, and W. Cai, “On dynamic bin packing for resource allocation in the
cloud,” in Proc. 26th ACM Symp. on Parallelism in Algorithms and Architectures,
2014, pp. 2-11.

[58] J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An Algorithm for the
Traveling Salesman Problem,” Operations Research, vol. 11, pp. 972-989, 1963.

[59] Z. Liu and S. Cho, “Characterizing machines and workloads on a Google cluster,” in
Proc. 8th Intl. Workshop on Scheduling and Resource Management for Parallel and
Distributed Systems, Sept 2012.

[60] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementa-
tions. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[61] L. Mashayekhy, M. Nejad, D. Grosu, and A. Vasilakos, “An online mechanism for
resource allocation and pricing in clouds,” IEEE Transactions on Computers, vol. PP,
no. 99, pp. 1-1, 2015.

[62] L. Mashayekhy, M. Nejad, and D. Grosu, “Cloud federations in the sky: Formation

game and mechanism,” IFEE Transactions on Cloud Computing, vol. 3, no. 1, pp.

14-27, Jan 2015.

www.manharaa.com

119

|63] ——, “Physical machine resource management in clouds: A mechanism design ap-
proach,” IEEE Transactions on Cloud Computing, vol. 3, no. 3, pp. 247-260, July
2015.

|64] ——, “A ptas mechanism for provisioning and allocation of heterogeneous cloud re-
sources,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 9, pp.
23862399, Sept 2015.

|65] G. Mitos, D. G. Murray, S. Hand, and M. A. Fetterman, “Satori: Enlightened page
sharing,” in Proc. of the 2009 Conference on USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2009.

|66] D. Minarolli and B. Freisleben, “Utility-driven allocation of multiple types of resources
to virtual machines in clouds,” in Proc. of the IEEE 13th Conference on Commerce
and Enterprise Computing, Sept 2011, pp. 137-144.

|67] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards characterizing cloud
backend workloads: insights from Google compute clusters,” SIGMETRICS Perform.
Eval. Rev., vol. 37, no. 4, pp. 34-41, Mar. 2010.

|68] R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. lightweight virtualization: A
performance comparison,” in Proc. 3rd IEEE Intl. Conf. on Cloud Engineering, March
2015.

[69] M. M. Nejad, L. Mashayekhy, and D. Grosu, “A family of truthful greedy mechanisms
for dynamic virtual machine provisioning and allocation in clouds,” in Proc. of IEEE
Sizth International Conference on Cloud Computing, 2013, pp. 188-195.

[70] ——, “Truthful greedy mechanisms for dynamic virtual machine provisioning and al-
location in clouds,” IEEE Trans. on Parallel and Distributed Systems, vol. 26, no. 2,
pp. 594 — 603, 2015.

[71] Y.-S. Pan, J.-H. Chiang, H.-L. Li, P.-J. Tsao, M.-F. Lin, and T. Chiueh, “Hypervisor
support for efficient memory de-duplication,” in Proc. of the IEEE 17th International

Conference on Parallel and Distributed Systems, Dec 2011, pp. 33-39.

www.manharaa.com

120

|72| R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector bin packing,”
Microsoft Research - Technical Report, 2011.

[73] R. Parmelee, T. Peterson, C. Tillman, and D. Hatfield, “Virtual storage and virtual
machine concepts,” IBM Systems Journal, vol. 11, no. 2, pp. 99-130, 1972.

|74] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm: Resource-
aware scheduling in storm,” in Proceedings of the 16th Annual Middleware Conference.
ACM, 2015, pp. 149-161.

[75] G.J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third generation
architectures,” Commun. ACM, vol. 17, no. 7, pp. 412-421, Jul. 1974.

[76] X. Project. (2010) Xen 4.0 release notes. |Online|. Available:
http://wiki.xen.org/wiki/Xen 4.0 _Release_Notes

[77] S. Rampersaud and D. Grosu, “A sharing-aware greedy algorithm for virtual machine
maximization,” in Proc. 13th IEEE Intl. Symp. on Network Computing and Applica-
tions, Aug 2014, pp. 113-120.

[78] ——, “A sharing-aware greedy algorithm for virtual machine maximization,” in Proc.
of 13th IEEFE International Symposium on Network Computing and Applications, Aug
2014, pp. 113-120.

[79] ——, “A multi-resource sharing-aware approximation algorithm for virtual machine
maximization,” in Proc. 3rd IEEFE Intl. Conf. on Cloud Engineering, March 2015, pp.
266-274.

|80] ——, “Sharing-aware online algorithms for virtual machine packing in cloud environ-
ments,” in Proc. 8th IEEE Intl. Conf. on Cloud Computing, July 2015, pp. 718-725.

[81] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Heterogeneity
and dynamicity of clouds at scale: Google trace analysis,” in Proc. ACM Symposium

on Cloud Computing, Oct. 2012.

www.manharaa.com

http://wiki.xen.org/wiki/Xen_4.0_Release_Notes

121

|82] ——, “Towards understanding heterogeneous clouds at scale: Google trace analysis,”
Intel Science and Technology Center For Cloud Computing, Carnegie Mellon Univer-
sity, Pittsburgh, PA., Tech. Rep. ISTC-CC-TR-12-101, April 2012.

|83] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: format -+
schema,” Google Inc., Mountain View, CA, USA, Technical Report, Nov. 2011, revised
2012.03.20.

[84] ——, “Obfuscatory obscanturism: making workload traces of commercially-sensitive
systems safe to release,” in Proc. 3rd Intl. Workshop on Cloud Management, Apr.
2012, pp. 1279-1286.

|85] S. Ross, A First Course in Probability, 8th ed. Upper Saddle River, NJ: Prentice
Hall, 2010.

[86] M. Sindelar, R. Sitaraman, and P. Shenoy, “Sharing-aware algorithms for virtual ma-
chine colocation,” in Proc. of the 23rd ACM symposium on Parallelism in Algorithms
and Architectures, New York, NY, USA, 2011, pp. 367-378.

|87] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules,”
Commun. ACM, vol. 28, no. 2, pp. 202-208, Feb. 1985.

[88] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provisioning for the cloud
using online bin packing,” IEEE Transactions on Computers, vol. 63, no. 11, pp. 2647—
2660, Nov 2014.

[89] SPEC. (2015, May) Second quarter 2015 SPECvirt_sc2013 results. [Online|. Available:
https://www.spec.org/virt sc2013/

[90] A. Storm. (2015) Storm. [Online|. Available: https://storm.apache.org/

[91] M. I. Sviridenko, “Worst-case analysis of the greedy algorithm for a generalization of
the maximum p-facility location problem,” Oper. Res. Lett., vol. 26, no. 4, pp. 193-197,
May 2000.

[92| S. Takahashi, A. Takefusa, M. Shigeno, H. Nakada, T. Kudoh, and A. Yoshise, “Virtual

machine packing algorithms for lower power consumption,” in Proc. of the IEEE jth

www.manharaa.com

https://www.spec.org/virt_sc2013/
https://storm.apache.org/

122

International Conference on Cloud Computing Technology and Science, Dec 2012, pp.
161-168.

[93] C.S. Tang and E. V. Denardo, “Models arising from a flexible manufacturing machine,
part ii: Minimization of the number of switching instants,” Oper. Res., vol. 36, no. 5,
pp. 778=784, Sep. 1988.

[94] R. Vaze, “Competitive ratio analysis of online algorithms to minimize packet trans-
mission time in energy harvesting communication system,” in Proceedings of IEEE
INFOCOM 2013, April 2013, pp. 115-1123.

[95] V. V. Vazirani, Approzimation Algorithms. New York, NY, USA: Springer-Verlag
New York, Inc., 2001.

[96] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at Google with Borg,” in Proceedings of the European
Conference on Computer Systems (EuroSys), Bordeaux, France, 2015.

[97] VMWare. (2006) Virtualization overview. [Online]. Available:
http://www.vmmware.com /pdf/virtualization.pdf

[98] C. A. Waldspurger, “Memory resource management in vimware esx server,” SIGOPS
Oper. Syst. Rev., vol. 36, no. SI, pp. 181-194, Dec. 2002.

[99] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in cloud computing systems
with heterogeneous servers,” in 2014 Proceedings of IEEE INFOCOM, April 2014, pp.
583-591.

[100] L. Wei, B. He, and C. H. Foh, “Towards multi-resource physical machine provisioning
for laaS clouds,” in Proc. of IEEE International Conference on Communications, June
2014, pp. 3469-3472.

[101] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and M. D. Corner,
“Memory buddies: Exploiting page sharing for smart colocation in virtualized data
centers,” in Proc. of the 2009 ACM SIGPLAN/SIGOPS International Conference on

Virtual Ezecution Environments, 2009, pp. 31-40.

www.manharaa.com

http://www.vmware.com/pdf/virtualization.pdf

123

[102] WSU. Wayne State University =~ HPC Grid. |Online]. Available:
http://www.grid.wayne.edu

[103] M. Xavier, M. Neves, F. Rossi, T. Ferreto, T. Lange, and C. De Rose, “Performance
evaluation of container-based virtualization for high performance computing environ-
ments,” in 2013 21st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), Feb 2013, pp. 233-240.

[104| Z. Xiao, Q. Chen, and H. Luo, “Automatic scaling of internet applications for cloud
computing services,” IEEE Trans. on Computers, vol. 63, no. 5, pp. 1111-1123, May
2014.

[105] F. Xu, F. Liu, and H. Jin, “Heterogeneity and interference-aware virtual machine
provisioning for predictable performance in the cloud,” IEEE Trans. on Computers,
vol. PP, no. 99, 2015.

[106] S.Zaman and D. Grosu, “Combinatorial auction-based mechanisms for vim provisioning
and allocation in clouds,” in Proc. of the 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, May 2012, pp. 729-734.

[107] ——, “A combinatorial auction-based mechanism for dynamic vm provisioning and
allocation in clouds,” IEEE Trans. on Cloud Computing, vol. 1, no. 2, pp. 129-141,
2013.

[108] ——, “Combinatorial auction-based allocation of virtual machine instances in clouds,”
J. Parallel Distrib. Comput., vol. 73, no. 4, pp. 495-508, Apr. 2013.

[109] L. Zhao, L. Lu, Z. Jin, and C. Yu, “Online virtual machine placement for increasing

cloud provider revenue,” IEEE Trans. on Services Computing, vol. PP, no. 99, 2015.

www.manharaa.com

http://www.grid.wayne.edu

124

ABSTRACT

SHARING-AWARE RESOURCE MANAGEMENT ALGORITHMS FOR
VIRTUAL COMPUTING ENVIRONMENTS

by
SAFRAZ RAMPERSAUD
May 2016
Advisor: Dr. Daniel Grosu
Major: Computer Science

Degree: Doctor of Philosophy

Virtualization technologies in cloud computing are ubiquitous throughout data cen-
ters around the world where providers consider operational costs and fast delivery guarantees
for a variety of profitable services. These providers should consistently invoke measures for
increasing the efficiencies of their virtualized services in a competitive environment where
fast entry to market, technology advancement, and service price differentials separate sus-
taining providers from antiquated ones. Therefore, providers seeking further efficiencies and
revenue generating opportunities should consider how their resources are managed in vir-
tual computing environments which leverage memory reclamation techniques, specifically
page-sharing; motivating the design of new memory sharing-aware resource management
algorithms. In this dissertation, we design families of offline and online sharing-aware al-
gorithms for resource management in virtual computing environments and investigate their
properties within a general sharing model. We evaluate our proposals by applying them to
heterogeneous resource domains where large, re-engineered trace dataset inputs are developed
in order to compare our algorithms. Lastly, we outline their applications to next-generation

virtualization technologies and streaming architectures.

www.manharaa.com

125

AUTOBIOGRAPHICAL STATEMENT

Safraz Rampersaud received his BSc degree in mathematics from Wayne State Univer-
sity in 2003. Following graduation, he worked with Detroit Public Schools as a mathematics
Fellow for the NFS GK-12 program. During this time, he studied for his MSc degree in ap-
plied mathematics focusing on optimization as a student under Dr. Mordukhovich at Wayne
State University. Following the completion of his MSc degree in 2005, he left for Baltimore,
MD to work with Wells Fargo Structured Products Group, N.A. as a Securities Analyst
and later worked as a Senior Operations Analyst with the Federal Home Loan Mortgage
Corporation (Freddie Mac) in McLean, VA.

In Fall 2010, he entered the Ph.D. program in computer science at Wayne State Uni-
versity as a student under Dr. Grosu and was selected to participate as an NSF IGERT Fellow
for the Socio-Technical Infrastructure for Electronic Transactions (STIET) program. During
this time, he has published eight peer-reviewed papers in venues such as IEEE CLOUD,
IEEE HPCC, IEEE IC2E, and IEEE ICEBE, has received awards for research (Stephen P.
Hepler Award, Best PhD Symposium Presentation Runner Up Award), teaching (Outstand-
ing Faculty Award, Tau Beta Phi Outstanding Teaching Service Award), and has had an
article selected as the featured article for the December 2014 issue of IEEE Transactions
on Parallel and Distributed Systems. His research interests include applied mathematics,

approximation algorithms, distributed systems, e-commerce and virtualization.

www.manharaa.com

	Wayne State University
	1-1-2016
	Sharing-Aware Resource Management Algorithms For Virtual Computing Environments
	Safraz Rampersaud
	Recommended Citation

	Dedication
	Acknowledgements
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Background
	The Dawn of the Hypervisor
	The Practice of Page Sharing
	Foundations of Sharing-Aware Resource Management
	Our Contributions

	Organization

	CHAPTER 2: SINGLE-RESOURCE VM MAXIMIZATION
	Introduction
	Our Contribution
	Related Work
	Organization

	Sharing-Aware VM Maximization
	Greedy Approximation Algorithm (G-SAVMM)
	G-SAVMM Properties
	Experimental Results.
	Experimental Setup
	Analysis of Results

	Summary

	CHAPTER 3: MULTI-RESOURCE VM MAXIMIZATION
	Introduction
	Our Contribution
	Related Work
	Organization

	Multi-Resource Sharing-Aware VM Maximization
	Binary Multilinear Program Formulation
	Greedy Approximation Algorithm (G-MSAVMM)
	G-MSAVMM Properties
	Experimental Results
	Experimental Setup
	Analysis of Results

	Summary

	CHAPTER 4: MULTI-RESOURCE VM PACKING
	Introduction
	Our Contribution
	Related Work
	Organization

	SA-OVMP: Problem
	SA-OVMP: Algorithms
	Next-Fit-Sharing (NFS) Algorithm
	First-Fit-Sharing (FFS) Algorithm
	Best-Fit-Sharing (BFS) Algorithm
	Worst-Fit-Sharing (WFS) Algorithm

	Offline Sharing-Aware VM Packing
	Experimental Results
	Experimental Setup
	Analysis of Results

	Summary

	CHAPTER 5: CONCLUSION
	Summary of Contributions
	Future Research Directions
	Analyzing Sharing-Aware Online VM Packing Performance
	Sharing-Aware Algorithms for Container Management
	Sharing-Aware Streaming Resource Management

	APPENDIX
	REFERENCES
	ABSTRACT
	AUTOBIOGRAPHICAL STATEMENT

