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CHAPTER 1: INTRODUCTION

Virtualization, i.e., the proess of abstrating a state from a primal resoure suh that

multiple instanes of the abstration may operate within a single environment simultaneously,

has played a dominant role in distributed omputing over the past two deades. Cloud

servie providers, publi and private institutions, et., derive signi�ant value by extending

the breadth of their virtualization tehnology in order to optimize the use of their resoures.

For many of these entities, this diretly translates to ost savings and/or an inrease of

revenue. Our inquiry fouses on inreasing the e�ieny of resoure management strategies

within a virtual omputing environment by exploiting the potential for sharing resoures. Our

interpretation of virtual omputing environment orresponds to any omputing environment

where resoures an be virtualized.

Our researh fouses on virtual memory relamation tehniques, spei�ally page

sharing, and how this proess in�uenes resoure management strategies when providers are

bound to alloate resoures in a variety of settings within a virtual omputing environment.

From the algorithmi perspetive, inquiries of this nature have only been investigated through

a single paper, Sindelar et al. [86℄, outside of our own ontributions. At a time when utting-

edge tehnologies suh as �wearable� devies and the internet-of-things (IoT) are heavily

dependent on large-sale virtualization of servies for operability, servie providers, now and

in the future, should improve resoure utilization at every opportunity to support these

innovations at sale. Therefore, designing e�ient resoure management strategies in virtual

omputing environments is pivotal to a growing industry.

1.1 Bakground

In this setion, we introdue the onepts that will serve as the foundation for this

dissertation. The ontents therein are an introdution to virtualization, an explanation of

how page-sharing operates, a motivation for formulating page sharing relationships, and a

review of relevant approximation algorithm onepts and models used throughout our work.
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We then present our ontributions whih make up the building bloks of this dissertation

and lose outlining the hapters within this dissertation.

1.1.1 The Dawn of the Hypervisor

In 1974, Popek and Goldberg [75℄ proposed su�ient onditions for the e�ient ex-

ploitation of unused omputing resoures within a omputer arhiteture. First-generation

omputers o�ered omputing apabilities for mostly single tasks and seond-generation om-

puting extended usability by dediating more speialized instrutions to the hardware and

allowed users more freedom to design proesses and appliations through high-level pro-

gramming languages. In the third-generation of omputing, internal reloation and trap

mehanisms, time-sharing and operating system multitasking were used to manage omput-

ing mahine resoures in order to perform tasks fast without having to utilize all the available

mahine resoures; paving the way for system resoure redistribution.

Popek and Goldberg envisioned an update to the third-generation omputing era

where physial mahines (PMs) ould abstrat a dupliate of themselves and isolate their

proesses from other abstrations on the same PM e�iently. Their ideas motivated the

use of a software layer known as the virtual mahine monitor (VMM), or hypervisor, whih

would support three main funtionalities: (i) reates a virtual mahine environment nearly

idential to an environment diretly supported by a PM, (ii) instantiation of the abstrations

would only su�er minimal performane degradation, and (iii) the system resoures would

be ontrolled by the VMM software layer; situated between the abstrations and the PM

resoures from whih it is supported. Then, any abstration under the ontrol of the VMM

would be known as a virtual mahine (VM).

In order for VMs to operate, they must satisfy three main properties: (i) e�ieny,

the VM should be able to exeute user proesses without requiring VMM support outside

of aquiring resoures; (ii) resoure ontrol, the VMs may not aess or modify the system

resoures diretly; and (iii) equivalene, not onsidering timing or lak of resoures, the VM

exeution under a VMM should be near indistinguishable from proess exeution natively on
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a PM. In order to haraterize these properties, Popek and Goldberg lassi�ed the types of

mahine instrutions used in Instrution Set Arhitetures (ISA) into three ategories: (a)

privileged, proessor instrutions whih perform a trap in user mode and do not perform a

trap if they are in system (kernel) mode; (b) ontrol sensitive, proessor instrutions whih

attempt to hange system resoure on�gurations; and () behavior sensitive, proessor in-

strutions whih are dependent on the system resoure on�gurations. Under these ategories

of instrution types, Popek and Goldberg [75℄ introdued the �rst theorem of virtualization

as follows:

Theorem 1.1.1. For any onventional third-generation omputer, an e�etive VMM may

be onstruted if the set of sensitive instrutions for that omputer is a subset of the set of

privileged instrutions.

Theorem 1.1.1 states that if an arhiteture satis�es all properties (i) through (iii)

by lassifying proessor instrutions into (a) through (), and if the VMM sensitive in-

strutions are a subset of its privileged instrutions, then the arhiteture is virtualizable.

Sine Theorem 1.1.1 is only a su�ient ondition, arhitetures whih do not satisfy the

stated requirements may still be virtualizable either through further modi�ations, e.g.,

binary-translation, or only be partially virtualizable, e.g., para-virtualization. Popek and

Goldberg's seond theorem orresponds to reursive virtualization, i.e., abstrating a VMM

through a VM abstration. Their theorem is as follows:

Theorem 1.1.2. A onventional third generation omputer is reursively virtualizable if it

is: (1) virtualizable, and (2) a VMM without timing dependenies an be onstruted for it.

The �rst omponent of Theorem 1.1.2 follows from Theorem 1.1.1. The seond om-

ponent of Theorem 1.1.2 onstrains the VMM to exeute without timing dependenies. If

timing dependenies exist for the abstrated VMM, then this ould lower performane whih

would violate the equivalene property.
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1.1.2 The Pratie of Page Sharing

Page sharing is a memory relamation tehnique whih hypervisors use in order to

redue memory utilization from among a group of VM tenants residing on the same PM.

The proess, managed by the hypervisor, entails identifying two or more VM tenants whih

run similar proesses suh as appliations, libraries, and/or operating systems; all onsisting

of physial bloks of memory, where a lower level of granularity for these physial bloks

of memory are known as pages. If two or more VM tenants exeute similar proesses on

the same PM, then the hypervisor an support the dedupliation of idential pages for

multiple VM tenants without interrupting their intended proesses. When dedupliation

ours, a single page survives and is used as the referene page, or is shared, among VM

tenants exeuting similar proesses. As an example, Figure 1.1 illustrates the end result

of a page being shared among two VM tenants. Both VM tenants neessitate six pages of

memory, where the �fth page within VM1's memory blok is idential to the third page

within VM2's memory blok. The hypervisor identi�es this equivalene, dedupliates the

similar pages among the VM tenants, manages a opy of the page within its own blok of

memory and provides referenes from that page to the appropriate loations within the VMs

memory blok in lieu of managing multiple, idential physial memory pages; hene, the

proess of page sharing has ourred. The onept of memory sharing was introdued in

1972 by Parmelee et al. [73℄. Shortly thereafter, system implementations of memory sharing

features were proposed by Bagley et al. [4℄. Motivated by the authors' desire to develop a

entralized library management database among a group of users, the VMM would not move

physial memory from one user to another, but rather hanges to the referenes, addresses

and privileges of the users page table entries would our in order to share the memory

features. The users ould then aess and modify ontent within the database without the

VMM transferring memory from one user to another through managed pointer referenes to

the data of interest.
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Figure 1.1: Page sharing among two VM tenants.

In the late 1990s, a di�erent motivation lead to a resurgene of onsidering how re-

soures an be shared through the VMM. In 1997, researh brought forth by Bugnion et

al. [15℄ was motivated by the need to manage large-sale, shared-memory multiproessor

operating system resoures. From their perspetive, operating system software was not de-

veloping as fast as needed to aommodate large-sale systems for new memory and proessor

hardware. A feature of their proposed solution was to modify the hypervisor layer to take

advantage of shared memory among VM tenants in the form of transparent page sharing

(TPS). This tehnique based page sharing on page harateristis suh as origin and loa-

tion within the hard disk. The VM tenant had opportunities to aess the shared pages

but issues would our if the memory pages were modi�ed. As a result, Bugnion et al. [15℄

implemented a system omposed of opy-on-write disks and operations to allow VM tenants

to share the original pages; yet, for the VM of interest desiring to modify memory through

a shared page, a private opy was reated by the hypervisor and aessed stritly by the

modifying VM only.

Transparent page sharing lead the way for large systems to minimize their memory

resoures; yet, in order to operate orretly, modi�ations to the VM tenant operating system

would have to our. Reognizing this as a potential liability, Waldspurger [98℄ is redited
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with the introdution of a new page sharing tehnique alled ontent-based page sharing.

In order to implement ontent-based page sharing, any hypervisor will routinely perform a

searh whih sans for memory pages among VM tenants whih are idential. A brute-fore

searh through all VM tenants for determining idential pages is expensive with a runtime of

O(n2
), where n is the number of VM tenants. Instead of a brute-fore method, a hash table

of VM tenant pages is managed by the hypervisor in order to determine idential pages in

less time. Early on, page-sharing systems implemented hashing algorithms suh as Jenkins

hashing funtion by Jenkins [45℄, then later implemented a more e�ient algorithm, Super-

FastHash by Hsieh [44℄, in order to apture potential page sharing opportunities within a

hash table.

Typially, hypervisor implementations operate on bloks of memory pages in sizes of

either 4 KB or 20 MB. Researh has shown that operating on the former size makes �nding

idential page bloks more di�ult than in the latter size [5℄. Eah memory page, whih is

evaluated for sharing, will have a generated hash value assoiated with it based on its bit

ontent. The page hash value is then heked against other hash values in a hash table,

where the table entries onsist of both the hash value and a page number whih identi�es

the original page, managed by the hypervisor, to be shared. If a math is determined, a

omparison between the potential and the original page ensues to determine if they are

bit-wise idential. If the bits math exatly, a referene to the original page is reated for

the potential page and the potential page memory is relaimed. Lastly, the original page is

�agged as read-only and then marked as opy-on-write by the hypervisor. A shared page

may be aessed by VM tenants but not modi�ed expliitly. In the ase a VM tenant requires

a write operation relative to the shared page, the hypervisor generates a private opy of the

shared page to be aessed by the VM tenant and provided with read-write aess. Other

VM tenants whih share the page will not have aess to the private opy.



www.manaraa.com

7

1.1.3 Foundations of Sharing-Aware Resoure Management

Our researh fouses on the design and analysis of sharing-aware resoure manage-

ment algorithms. The di�erenes between our proposals and the existing tehniques are that

existing tehniques do not fous on apturing the utility of memory sharing when alloating

VM tenants onto PM resoures and they restrit the relationship between VM tenants and

their memory pages to a spei� model when attempting to identify page sharing oppor-

tunities. Therefore, if we onsider page-sharing within a variety of more traditional VM

alloation problems, the proess beomes more di�ult to manage and further modi�ations

to existing algorithms are required. Considering the example from Figure 1.1, we formalize

a sharing relationship where both V1 and V2 are omposed of six pages and an idential

page is shared between them. If we aggregate the amount of memory required to host the

VM tenants and inlude the pages managed by the hypevisor, we an derive the following

relationship,

|π(V1) ∪ π(V2)| ≤ |π(V1)|+ |π(V2)|, where

|π(V1) ∪ π(V2)| = 11 & |π(V1)|+ |π(V2)| = 12

(1.1)

and π(Vi) represents the set of memory pages required by VM Vi. The right-hand side of

Equation 1.1 orresponds to the number of memory pages requested by eah VM, while

the left-hand side orresponds to pages alloated by the mehanism, that is alloating the

shared pages only one in memory. While this is a small example, it nonetheless expresses

how, through page sharing, the aggregate number of memory pages whih are required to

be managed is less than the total number of requested memory pages by the VM tenants;

re�eting a triangle-like inequality on the number of required pages. Moreover, greater insight

into how many pages are required by the hypervisor to host both VMs an be obtained by

re-expressing the union of pages between the two VM memory page sets as,

|π(V1)| ∪ |π(V2)| = |π(V1)|+ |π(V2)| − |π(V1 ∩ V2)|, or (1.2)
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∣

∣

∣

∣

∣

2
⋃

j=1

π(Vj)

∣

∣

∣

∣

∣

= |π(V1)|+ |π(V2)| − |π(V1 ∩ V2)|. (1.3)

Naturally, we an extend the relationship to the general ase for M VM tenants, where the

aggregate memory pages required to host all the tenants by the hypervisor is identi�ed as the

union of all pages requested. Due to the properties of sets, only unique pages will be elements

of the union; whereby, any of these pages are shareable. Similar in form to Equation 1.3, we

an expand the right side for the general ase as follows,

∣

∣

∣

∣

∣

M
⋃

j=1

π(Vj)

∣

∣

∣

∣

∣

=

M
∑

j=1

π(Vj)−
∑

j1<j2

π(Vj1 ∩ Vj2) +

· · ·+ (−1)r+1
∑

j1<j2<···<jr

π(Vj1 ∩ Vj2 ∩ · · · ∩ Vjr) +

· · ·+ (−1)M+1π(Vj1 ∩ Vj2 ∩ · · · ∩ VjM ) (1.4)

where

∑

j1<j2<···<jr

π(Vj1 ∩ Vj2 ∩ · · · ∩ Vjr) is taken over all

(

M

r

)

possible subsets of size r

from the set {V1, V2, . . . , VM}. Based on the inlusion-exlusion identity from probability

theory [85℄, Equation 1.4 an be simpli�ed and re-expressed in set notation form on the

indies in the right hand side as follows,

∣

∣

∣

∣

∣

M
⋃

j=1

π(Vj)

∣

∣

∣

∣

∣

=
∑

J∈P(V)

(−1)(|J |+1)

∣

∣

∣

∣

∣

⋂

j∈J

π(Vj)

∣

∣

∣

∣

∣

. (1.5)

The set notation index on J in Equation 1.5 orresponds to an index from the power set

of the set of VMs, P(V), where |V| = M . The right hand side of Equation 1.5 serves as

a basis to haraterize the general page sharing relationship between M VM tenants and

their subsets in �o�ine� environments. In order to determine the optimal VM alloation in

�o�ine� environments while onsidering page sharing, optimization programs whih exhibit

harateristis of nonlinearity and nononvexity an be modeled and solved for by onsidering

the right hand side of Equation 1.5 as the program's memory onstraint shown in Chapters

3 and 4. If enough memory pages an be shared and all other resoures are available, then
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more VMs may be alloated to utilize more e�iently the memory resoure. Unfortunately,

alulating the right hand side of Equation 1.5 to determine the number of pages required

among a set of M VM tenants requires an exponential number of operations, making the

omputation infeasible. Therefore, we have to rely on approximation algorithms whih an

determine VM alloations while onsidering page sharing and an exeute in reasonable time

and generate reasonable results. In the following subsetions, we review the approximation

algorithms onepts and system models whih underpin the design of our sharing-aware

resoure management algorithms.

The Knapsak Problem

We now brie�y desribe the lassi knapsak problem and its appliation to sharing-

aware resoure management. The knapsak problem [95℄ is a lassi ombinatorial optimiza-

tion problem desribed as follows:

The Knapsak Problem: Given a set S = {a1, . . . , an} of objets, with size(ai),

revenue(ai)∈ Z
+
, and a �knapsak apaity� B ∈ Z

+
, �nd a subset of objets

whose total size is bounded by B and the total revenue is maximized.

Problems of this ombinatorial nature are NP-hard [32℄ and have been investigated well

before the turn of the 20th entury. In 1957, Dantzig oined the term knapsak in observation

of ertain lasses of ombinatorial problems whih ould be modeled as disrete-valued, linear

programming problems. The standard 0-1 integer programming version of the knapsak

problem an be formulated as follows [60℄:

max

n
∑

j=1

pjxj

s.t.

n
∑

j=1

wjxj ≤ c

where xj ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n}

and pj is the revenue of the j
th
item, wj is the size of the j

th
item, c is the knapsak apaity

and xj is a boolean deision variable whih determines if the jth item should be inluded
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in the �knapsak�, xj = 1, or should not be inluded, xj = 0. Many variations of the

standard formulation have have been investigated in the researh literature when framing

knapsak-like problems with spei� qualities, e.g., frational items, multi-dimensional, non-

linear objetives, et. Heuristi solution tehniques have been formulated early on in order

to solve knapsak problems based on dynami programming [25℄, greedy algorithms [58℄

and branh & bound tehniques [55℄. A omprehensive treatment of knapsak variant prob-

lems, approximation algorithms for solving them, and performane analyses an be found in

Vazirani [95℄, Martello and Toth [60℄, and Kellerer [52℄.

Spei� to our researh, we investigate VM Maximization whih desribes the problem

of alloating VMs onto a single server to maximize the revenue, where the revenue is the

sum of the revenue derived from hosting eah individual VM; whih in the most general

form, an be modeled as the knapsak problem. When the sharing of pages among the VMs

is onsidered, the problem of VM revenue maximization is no longer diretly equivalent to

the knapsak problem and existing algorithms will produe less than the maximum revenue

due to not alloating additional VMs on the extraneous server resoures. Thus, the VM

Maximization problem is onsidered a new variant of the knapsak problem in whih the

items an share spae in the knapsak.

The Bin-Paking Problem

We now brie�y desribe the lassi bin paking problem and its appliation to sharing-

aware resoure management. The origins of the bin paking problem were inspired by the

knapsak problem through appliations of the utting stok, Gilmore and Gomory [34℄, and

job-shop sheduling, Conway et al. [22℄, problems from the 1960s. Both of these applia-

tions previously modeled their problems as knapsak variants in order to maximize a spei�

objetive. When the objetive shifts from identifying the subolletion of items whih maxi-

mizes a value, to minimizing the number of �knapsaks� required to omplete an assignment

of items, the problem is then reformulated into a bin paking problem. The bin paking [95℄

problem is a lassi ombinatorial optimization problem whih is desribed as follows:
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The Bin Paking Problem: Given a bin S of size V and a list of n items with

sizes a1, a1, . . . , an to pak, �nd an integer number of bins B and a B-partition

S1
⋃

· · ·
⋃

SB of the set {1, 2, . . . , n} suh that

∑

i∈Si

ai ≤ V, ∀ k = 1, 2, . . . ,B

and the number of bins is minimized.

The standard 0-1 integer programming version of the bin paking problem an be

formulated as follows [60℄:

min

n
∑

i=1

yi

s.t.

n
∑

j=1

wjxij ≤ cyi, ∀ i ∈ {1, 2, . . . , n}

s.t.

n
∑

j=1

xij = 1, ∀ i ∈ {1, 2, . . . , n}

where xij ∈ {0, 1}, ∀ i, j ∈ {1, 2, . . . , n}

and yj ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , n}

and c is the apaity of eah bin, wj is the weight of the jth item, yi is a boolean deision

variable whih determines if the ith bin should be used, yi = 1, or should not be used, yi = 0,

and xij is also a boolean deision variable whih determines if the jth item should be assigned

to the ith bin, xij = 1, or should not be assigned aordingly, xij = 0. Due to ombinatorial

nature of assigning items for every ombination of bins, the bin paking problem is also NP-

hard [32℄. As a result, a suite of heuristi algorithms were developed whih solve the lassi

bin paking problem. In 1972, Garey et al. [31℄ designed and analyzed several algorithms

for the bin-paking problem; namely, First-Fit, Best-Fit, First-Fit-Dereasing and Best-Fit-

Dereasing. Further researh in this domain naturally followed in Johnson [49℄; broadening

the lass of heuristi algorithms solving the bin paking problem in whih algorithms belong-

ing to the same lass were haraterized by similar worst ase behavior. In 1974, a thorough

analysis of the aforementioned works was published by Johnson et al. [48℄ whih designed

and analyzed a suite of approximation algorithms for the bin paking problem.
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Several variations on the standard formulation have appeared in the literature for

framing bin paking problems with spei� qualities, e.g., bin paking with variable sized

bins, bin paking with item rejetion, bin paking with item fragmentation, et. Approxi-

mation algorithms have been studied rigorously over half a entury for solving bin paking

problems and their variants. A omprehensive survey on approximation algorithms for lassi

bin paking problems is by Co�man et al. [20℄. Approximately three deades later, Co�man

et al. [19℄ provided an updated survey of bin-paking problems.

Spei� to our researh, we investigate VM Paking whih desribes the assignment of

VM requests onto a minimum number of ative servers required to instantiate the requests;

whih in the most general form, an be modeled as the bin paking problem. When the

sharing of pages among the VMs is onsidered, the problem of determining the minimum

set of ative servers is no longer diretly equivalent to the bin paking problem and existing

algorithms will ativate more servers than neessary; resulting in wasted server resoure

utilization. Thus, the VM Paking problem is onsidered a new variant of the bin-paking

problem in whih the items an share spae in the bins.

Sindelar et al. [86℄ were the �rst to propose and analyze �o�ine� sharing-aware algo-

rithms for the VM Maximization and VM Paking problems under hierarhial page sharing

models. Our work in this dissertation di�ers substantially from Sindelar et al. in that we

design algorithms for both online and �o�ine� settings, onsider multiple type VM resoure

requests, assume heterogeneous server apaities and operate under a general sharing model.

By fousing on the general sharing model, further memory relamation an our when

VMs request similar operating systems with di�erent overlapping subsets of appliations or

libraries, whih are not aptured by hierarhial models.

1.1.4 Our Contributions

In this setion, we present the summary of our ontributions and the outline of our

dissertation. We summarize below the three researh projets that we aomplished as part

of this dissertation.
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• Sharing-Aware Virtual Mahine Maximization. Servie providers fae multiple

hallenges in hosting an inreasing number of virtual mahine (VM) instanes. Mini-

mizing the utilization of system resoures while maximizing the potential for revenue

are among the most ommon hallenges. Reent studies have investigated memory

relamation tehniques foused on virtual tehnologies, spei�ally page sharing, for

minimizing the utilization of system resoures. By inorporating page sharing into

the hallenge of sheduling VMs on physial mahines, we formulate the sharing-aware

VM maximization (SAVMM) problem. The SAVMM problem requires determining the

set of VMs that an be instantiated on a given server suh that the revenue derived

from hosting the VMs is maximized when VMs onsist of only the memory resoure.

The SAVMM problem has been shown to be NP-hard. Therefore, we address this

hallenge by developing a greedy algorithm for solving this problem. We determine

the approximation ratio of our greedy algorithm and perform extensive experiments

to investigate its performane against other VM alloation algorithms. This is the

�rst algorithm proposed in the literature whih solves the VM maximization problem

under a general sharing model. A paper desribing this researh was published in the

Proeedings of the 13th IEEE International Symposium on Network Computing and

Appliations (NCA'14) [77℄. We present this researh in Chapter 2.

• Multi-Resoure Sharing-Aware Virtual Mahine Maximization. Providers

fae the hallenge of e�iently managing their infrastruture through minimizing re-

soure onsumption while alloating servie requests suh that their revenue is max-

imized. Solutions addressing this hallenge should onsider the sharing of memory

pages among virtual mahines (VMs) and the available apaity of eah type of re-

quested resoures. We provide suh solution by designing an approximation algorithm

for solving the multi-resoure sharing-aware virtual mahine maximization (MSAVMM)

problem. The MSAVMM problem requires determining the set of VMs that an be in-

stantiated on a given server suh that the revenue derived from hosting the VMs is
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maximized. In addition, we model the MSAVMM problem as a multilinear binary

program and optimally solve for maximized revenue, while aounting for page shar-

ing and multiple resoure onstraints. We determine and analyze the approximability

properties of our proposed greedy algorithm and evaluate it by performing extensive

experiments using Google luster workload traes. The experimental results show that

under various senarios, our proposed algorithm generates higher revenue than other

VM alloation algorithms while ahieving signi�ant redution of alloated memory.

This is the �rst algorithm proposed in the literature whih solves the multi-resoure

VM maximization problem under a general sharing model. A paper desribing this

researh was published in the Proeedings of the 3rd IEEE International Conferene

on Cloud Engineering (IC2E'15) [79℄ and an extended version of this paper has been

submitted to IEEE Transations on Computers for publiation. We present this work

in detail in Chapter 3.

• Sharing-Aware Online Algorithms for Virtual Mahine Paking in Cloud

Environments. Cloud servie providers o�er on-demand omputing resoures to a

large number of users by employing virtualization tehnologies. A key hallenge faed

by loud servie providers is to develop e�ient algorithms for assigning Virtual Ma-

hine (VM) instanes to server resoures suh that the number of required servers whih

meet the users' demand is minimized. This hallenge has been referred in the literature

as the VM Paking problem, a variant of bin paking that is NP-hard. The VM Pak-

ing problem di�ers from other paking problems in that, through virtualization, the

VM instanes olloated on the same server an share memory pages whih redues the

amount of loud resoures required to satisfy users' demand. By fousing on the oppor-

tunity for olloated VMs to virtually share memory through a hypervisor, we design

a family of sharing-aware online algorithms for solving the VM Paking problem. We

also introdue a new multilinear program whih aptures the essene of sharing mem-

ory and optimally solves the �o�ine� VM Paking problem. Lastly, we evaluate our
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sharing-aware online algorithms through extensive experiments and ompare them not

only against themselves but also against their sharing-oblivious ounterparts. These

algorithms are the �rst algorithms proposed in the literature whih solve the multi-

resoure VM paking problem under a general sharing model. The results of this

researh were published in Proeedings of the 8th IEEE International Conferene on

Cloud Computing (CLOUD'15) [80℄ and an extended version of this paper has been

submitted to IEEE Transations on Parallel and Distributed Systems for publiation.

We present this work in detail in Chapter 4.

1.2 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present our

researh on the design of a new sharing-aware greedy approximation algorithm for the �o�ine�

VM Maximization (SAVMM) problem under a general memory sharing model. In Chapter 3,

we present our researh on the design of a new multi-resoure sharing-aware approximation

algorithm whih solves the �o�ine� multi-resoure VM Maximization (MSAVMM) problem

and introdue the optimal multilinear boolean program whih models this problem and an

be solved for under a general sharing model. In Chapter 4, we present our researh on

the design of a family of multi-resoure sharing-aware online algorithms for the online VM

Paking (SA-OVMP) problem and introdue the optimal multilinear boolean program whih

models this problem and an be solved for in an �o�ine� environment under a general sharing

model. In Chapter 5, we desribe the possible future diretions of our researh, and onlude

the dissertation.
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CHAPTER 2: SINGLE-RESOURCE VM MAXIMIZATION

2.1 Introdution

Virtualization, the proess of abstrating a software layer whih deouples the phys-

ial hardware from the operating system to deliver greater resoure utililization and �ex-

ibility [97℄, serves as a means to inrease produtivity, lower power onsumption, redue

hardware installation, and overall, minimize the need for inreasing the resoure apaity to

meet the demand [46℄. The appliation of virtualization tehnologies is ubiquitous in data

enters around the world whih must onsider operational osts and guarantee fast delivery

of a variety of pro�table servies. Spei�ally, the servie provider must ensure the e�ieny

of their virtualized servie in a ompetitive environment where fast entry to market, teh-

nology advanement, and servie priing di�erentials an separate sustaining providers from

antiquated ones. Proprietary virtualization platforms, suh as VMWare's ESX Suite, Mi-

rosoft's Hyper-V and IBM's PowerVM, vary in their methods of operations, e.g., full-, para-

and hardware assisted-virtualization, overhead and available number of guest OS hosting a-

paities among other features. Open-soure alternatives, e.g., Xen, KVM and Linux-VServer,

o�er omparable features and operations to the proprietary platforms while being supported

by a large online ommunity. Moreover, open-soure virtualization systems suh as Xen [6℄

have improved the user experiene by implementing safe resoure management strategies

without losing performane and/or funtionality.

Virtualization has undergone a signi�ant evolution spanning approximately half a

entury. Innovations within virtualization tehnology were initially foused on overom-

ing the limitations of third-generation omputing arhitetures [35℄. Within this ontext,

virtualization solved the problem of proteting non-privileged referenes to end users when

multiple end users attempted to aess non-privileged instrutions through a privileged mode

on the base mahine [35℄. Invoation of a software layer to aess the non-privileged instru-

tions, known at the time as the privileged software nuleus, su�ered from single aess to

the non-privileged referenes limiting the potential for multiple users. Hene, virtualization
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was born out of these limitations and ful�lled the opportunity to repliate the privileged and

non-privileged instrution sets from the base mahine, known as the host, for multiple end

users through a transformed software layer referred to as a hypervisor.

Minimizing resoure onsumption has been a key driver in the overall advanement of

virtualization tehnologies. Memory relamation tehniques suh as ballooning, hypervisor

swapping, memory ompression, and page sharing all attempt to e�iently utilize virtual

mahine (VM) memory [98℄. Page sharing reates new hallenges in the development of

algorithms whih alloate VMs onto server resoures. The problem of alloating VMs onto a

single server to maximize the revenue, where the revenue is the sum of the revenues derived

from hosting eah individual VM, is equivalent to the knapsak problem. The equivalene is

made by assoiating eah VM as an objet and by quantifying the number of memory pages

required to host eah VM as the weight. Therefore, eah VM an be treated as a distint

objet having a weight and a utility given by the revenue derived from hosting it. As a result

of this equivalene, knapsak heuristi algorithms an be suessfully applied to solve the

above VM alloation problem when page sharing is not onsidered. When the sharing of

pages among the VMs is onsidered, the problem of VM revenue maximization is no longer

equivalent to the knapsak problem. Existing knapsak algorithms will produe less than the

maximum revenue due to not alloating additional VMs on the extraneous server resoures

whih beomes available when VM pages are shared; resulting in loss of revenue. Therefore,

new algorithms for VM maximization that take into aount the sharing of pages among

VMs must be developed.

2.1.1 Our Contribution

We address the problem of sharing-aware VM maximization in a general sharing

model whih has as objetive �nding a subset of VMs that an be hosted by a server with

a given memory apaity suh that the total revenue derived from hosting the subset of

VMs is maximized. This problem has been shown to be NP-hard [86℄. Therefore, we

design a greedy approximation algorithm based on a new e�ieny metri whih onsiders
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both revenue-seeking and page sharing opportunities in the VM alloation proess. We

determine the approximation ratio of our greedy algorithm that solves the sharing-aware

VM maximization problem in the general sharing model, a model that does not assume

any hierarhial or other strutured form of sharing. We perform extensive experiments to

evaluate the performane of our greedy algorithm against other VM alloation algorithms.

2.1.2 Related Work

The sharing-aware VM maximization problem has been introdued by Sindelar et

al. [86℄. Their main ontributions lie in the development of hierarhial sharing models

for VM oloation for both the VM maximization and paking problems. They were the

�rst to propose and investigate algorithms for solving the sharing-aware VM maximization

problem. Their researh is the losest to our researh. Our researh on the sharing-aware VM

maximization problem fouses on the general sharing model whih di�ers from the shared

hierarhial models investigated by Sindelar et al. [86℄.

The sharing-aware VM maximation problem has been shown to be NP-hard [86℄.

Thus, solving it optimally is not feasible and we have to resort to approximation algorithms,

more spei�ally greedy algorithms. Greedy algorithms have been extensively investigated

for di�erent lassial problems suh as the knapsak [52℄, subset-sum, partition [56℄, as well

as, faility loation [91℄. Greedy algorithms for VM provisioning and dynami alloation in

louds have been investigated by Zaman and Grosu [106℄ [107℄ [108℄, who designed ombi-

natorial aution-based mehanisms. Nejad et al. [69℄ designed a family of truthful greedy

heuristi mehanisms for dynami VM provisioning. Other researh on greedy heuristis for

VM provisioning foused on minimizing bandwidth-onstraint VM plaement in data en-

ters [21℄, minimizing power onsumption [92℄, federated louds [62℄, and physial mahine

resouring in louds by implementing a mehanism design approah [63℄. All these works

foused on designing algorithms for provisioning VMs on multiple physial mahines within

a loud omputing system, and for alloation of VMs to users. Our work fouses on devel-

oping algorithms that maximize the revenue derived from hosting VMs on a single physial
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mahine that an be employed in making deisions at the physial mahine level and work

in onjuntion with higher level resoure management algorithms suh as the ones disussed

above.

Muh of the work on page sharing foused on system development. Bugnion et al. [15℄

proposed the transparent page sharing tehnique for minimizing redundany and memory

overhead. Commerial systems suh as VMWare's ESX Server [5℄ enable transparent page

sharing in addition to other memory relamation tehniques [98℄. Wood et al. [101℄ proposed

Memory Buddies, a sharing-aware VM memory alloation system whih uses the VMWare

ESX Server to identify page sharing opportunities. This is ahieved by employing hashing

algorithms that apture the potential for sharing between multiple VMs. The open soure

Xen hypervisor [6℄, has inorporated page sharing in Versions 4.0 and above for Hardware

Virtual Mahines (HVM) [76℄. Gupta et al. [41℄ developed the Di�erene Engine system

whih inorporates sub-page sharing, i.e., sharing pages that are nearly idential, and uses

ompression tehniques for pages that are not similar, thereby further reduing the overall

memory footprint. Our work fouses on developing sharing-aware VM alloation algorithms

that maximize the revenue obtained from hosting the VMs and take into aount page

sharing.

2.1.3 Organization

The rest of the hapter is organized as follows. In Setion 2.2, we desribe the

sharing-aware VM maximization problem. In Setion 2.3, we present the design of our

proposed e�ieny metri and our greedy algorithm for the sharing-aware VM maximization

problem. In Setion 2.4, we haraterize the properties of the proposed greedy algorithm.

In Setion 2.5, we evaluate our greedy algorithm against other VM alloation algorithms

by extensive experiments. In Setion 2.6, we summarize our results and present possible

diretions for future researh.
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2.2 Sharing-Aware VM Maximization

We now introdue the SAVMM (Sharing-Aware Virtual Mahine Maximization) prob-

lem as it applies to a servie provider resoure environment.

We assume that a servie provider maintains a server Ω, and a library Π of all memory

pages required for eah servie it o�ers. Thus, the provider an identify and manage all

memory pages required by a VM. We denote by πi, the i-th memory page under the provider's

management. Library Π is omprised of N distint pages, i.e., Π =

N
⋃

i=1

{πi}.

Eah VM instane requires a set of memory pages whih virtualizes a servie o�ered

by the provider. We denote by Vj , the VM instane j, by Λj, the set of indies of pages

required by Vj, and by π
j
i , the i-th memory page required by VM Vj. We denote by V,

the set of �o�ine� VM instanes that are possible andidates for alloation and hosting on

server Ω. Given this setup, we de�ne the SAVMM problem as follows:

SAVMM problem: Given a set of M �o�ine� VMs V with eah VM Vj yielding

a revenue of pj , determine a subset VH ⊂ V of VMs that an be alloated on

the server, onsidering the memory apaity C of the server and the sharing of

pages within library Π, suh that the total revenue, P =
∑

j:Vj∈VH

pj , obtained by

the provider is maximized.

The SAVMM problem may appear similar to the standard knapsak problem [52℄, but it is

not the same, beause the items (VMs) in the SAVMM problem are shared, while the items

in the standard knapsak problem are not. Server Ω an host all the VMs in V, if all the

VMs in the set share the same pages and the total number of alloated pages does not exeed

the apaity C of the server. The notation we use throughout the paper is summarized in

Table 2.1.

2.3 Greedy Approximation Algorithm (G-SAVMM)

In this setion, we present the design of our greedy algorithm for solving the SAVMM

problem. The main idea used in the design of our greedy algorithm is to order the andidate

VMs aording to a metri whih haraterizes their potential for revenue and page-sharing
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Table 2.1: SAVMM Notation.

Expression Desription

Π Set of pages under provider's management.

N Number of memory pages under provider's management.

V Set of �o�ine� VMs.

M Number of �o�ine� VMs.

VH
Subset of VMs maximizing provider's revenue, VH ⊂ V .

Vj Virtual mahine j.

πi The i-th memory page under provider's management.

π
j
i The i-th memory page requested by VM Vj .

pj Revenue generated from alloating VM Vj .

Λj Set of indies of pages requested by VM Vj .

Ω Provider's server resoure.

C Memory apaity of server resoure Ω.
k Iteration number.

Ekj E�ieny metri of VM Vj at iteration k.

Sk
j Number of pages VM Vj shares with Ω at iteration k.

and then alloates them one by one aording to the greedy order. The greedy metri and

the greedy order is updated after alloating eah VM. This represents an iteration in the

greedy alloation proess and will be denoted by k.

We �rst introdue the proposed metri we use in our greedy algorithm to establish

the greedy order among the andidate VMs. At every iteration k, we order the andidate

VMs, Vj ∈ V, aording to an e�ieny metri, Ekj , de�ned as follows:

Ekj =
pj

√

Kj − Sk
j + 1

. (2.1)

where j is the index orresponding to VM Vj , Kj is the number of pages required by VM Vj

(i.e., Kj = |Λj|), and Sk
j is the number of shared pages between VM Vj and the VMs that

are already alloated to the server. The e�ieny metri Ekj represents the relative value of

alloating VM Vj onto Ω by onsidering the revenue pj and the potential for sharing pages

haraterized by Sk
j , where k orresponds to the urrent greedy iteration. Prior to alloating

the �rst VM onto Ω (i.e., at iteration k = 0), the e�ieny metri for the �o�ine� set V

of VMs is alulated using S0
j determined relative to the number of shared pages within all

the VMs in V and not relative to the VMs that are alloated on the server. One a VM
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has been seleted and alloated (i.e., for all iterations k > 0) then Ekj is alulated using Sk
j ,

the number of shared pages between VM Vj and the VMs that are already alloated onto

the server. As k inreases and VMs are alloated onto Ω, we have Sk
j ≤ Sk+1

j , that is Sk
j

monotonially inreases with k, for k > 0.

Sine Ekj needed to be well de�ned for all possible ases, we add 1 to the denomi-

nator. The reason for this is that, if VM Vj shares all its pages with another VM already

alloated onto Ω, (i.e., Kj = Sk
j , ∀k), and if we do not onsider adding 1 to the denomina-

tor of Ekj =
pj

√

Kj − Sk
j

, then the e�ieny metri would produe an indeterminate value.

We also redue the magnitude of the sharing potential in the e�ieny metri against the

revenue by applying a square root to the denominator. Revenue has the largest e�et when

alulating the e�ieny metri and therefore we want to apture as muh e�et as possible,

while still allowing for the in�uene of page sharing. Similar metris to our e�ieny metri

have been experimented with in studies fousing on the knapsak problem [52℄ and have led

to good approximation ratios.

The G-SAVMM algorithm for solving the SAVMM problem are presented in Algo-

rithms 1 and 2. G-SAVMM onsists of two phases, exeuted one after the other: (i) a

pre-proessing phase, for k = 0 (Algorithm 1); and, (ii) a greedy alloation phase, for k > 0

(Algorithm 2). The input of G-SAVMM is an �o�ine� set of VMs V. G-SAVMM determines

the set VH
of VMs alloated onto the server, whih is an approximate solution to the SAVMM

problem.

In the pre-proessing phase, G-SAVMM sans every VM Vj to identify its required

pages, denoted by π
j
i . ativePage() (Line 8) is a funtion that returns 1, if page π

j
i is

requested, or returns 0 if page π
j
i is not requested. For every ative page π

j
i the algorithm

inrements the variable Kj, the number of pages required by VM Vj , and Ai, the number

of page πi ourrenes among all VMs in V (Lines 6 through 10). After alulating A, the

algorithm determines the page from V that has the maximum number of requests whih is

identi�ed by index ĩ (Line 11). If a VM requests page πĩ, that VM will be plaed in the
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Algorithm 1 G-SAVMM: Phase I

1: Input: Set of �o�ine� VM instanes (V)
2: {Phase I: Pre-proessing}

3: VH ← ∅
4: A← 0

5: ĩ, j̃, k ← 0
6: for i = 1, . . . , N do

7: for j = 1, . . . , |V| do
8: if (ativePage(π

j
i )) then

9: Ai = Ai + 1
10: Kj = Kj + 1

11: ĩ = argmax
i

{Ai}
12: for j = 1, . . . , |V| do
13: if (ativePage(π

j

ĩ
)) then

14: VH = VH ∪ {Vj}
15: for all j ∈ VH

do

16: for i = 1, . . . , N do

17: if (Ai > 1) & (ativePage(π
j
i )) then

18: S0
j = S0

j + 1

19: for all j ∈ VH
do

20: E0j =
pj

√

Kj − S0
j + 1

21: j̃ = argmax
j

{E0j }
22: C = C −Kj̃

23: VH = VH ∩ {Vj̃}
24: V = V \ {Vj̃}
25: for i = 1, . . . , N do

26: if (ativePage(π
j̃
i )) then

27: ativate(πi)

28: k ← 1

subset VH
(Lines 12 through 14). The algorithm then alulates S0

j , the number of shared

pages among the VMs in VH
, by identifying the ative pages where Ai > 1, implying more

than one VM is requesting memory page i (Lines 15 through 18). The e�ieny metri

(Eq. 2.1) is then alulated for all VMs in subset VH
(Lines 19 and 20). One the VM with

the largest e�ieny value, denoted by Vj̃ , is identi�ed (Line 21), the server apaity C is

redued by the number of pages Kj̃ in Vj̃ (Line 22). Following the server apaity redution,

the subset VH
is modi�ed by eliminating all VMs with the exeption of VM Vj̃ (Line 23) and

then VM Vj̃ is removed from V (Line 24). Following the alloation of VM Vj̃, every requested

page π
j̃
i is identi�ed, and πi is ativated on the server resoure through a funtion we denote

as ativate() (Lines 25 through 27). The ativate() funtion implements the ations that need
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Algorithm 2 G-SAVMM: Phase II

1: Output: Subset of VM instanes maximizing provider revenue (VH)

2: {Phase II: Greedy alloation}

3: while (C > 0) & (|V| > 0) do
4: flag ← 1
5: for i = 1, . . . , N do

6: for j = 1, . . . , |V| do
7: if (ativePage(π

j
i )) & (ativePage(πi)) then

8: Sk
i = Sk

i + 1

9: for j = 1, . . . , |V| do
10: Ekj =

pj
√

Kj − Sk
j + 1

11: j̃ = argmax
j

{Ekj }

12: if C − (Kj̃ − Sk

j̃
) < 0 then

13: flag ← 0
14: V = V \ {Vj̃}
15: if (flag) then

16: VH = VH ∪ {Vj̃}
17: V = V \ {Vj̃}
18: C = C − (Kj̃ − Sk

j̃
)

19: for i = 1, . . . , N do

20: if (ativePage(π
j̃
i )) then

21: ativate(πi)

22: k = k + 1

23: Ω← VH

24: exit

to be performed in order to make a page ative on the server. The implementation of this

funtion is platform spei� and is out of the sope of this study. The pre-proessing phase

is ompleted with an update of the iteration number k to 1 (Line 28).

The greedy alloation phase of G-SAVMM, (i.e., Algorithm 2 where iteration k > 0),

is similar to the pre-proessing phase (Algorithm 1 where iteration k = 0). At the beginning

of the greedy phase, a test is performed to ensure that server apaity C is never exeeded

and that there is at least one VM in V (Line 3). The di�erenes between the two phases

onsists on how sharing is heked. In the �rst phase, the pages in eah VM from set VH

are heked against the pages of all other VMs in VH
(Algorithm 1 Lines 15 through 18),

while in the seond phase the pages of eah VM from V are heked against the ative pages

on server resoure Ω (Algorithm 2, Lines 5 through 8). Every time a new VM Vj is inserted

into VH
, a new e�ieny value is alulated (Lines 9 and 10) for every k > 0. A test is then
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performed to realulate the server apaity redued by number of pages, Kj , less the shared

pages, Sk
j , in ommon with the ative pages on the server resoure Ω.

If, by alloating VM Vj onto Ω, the apaity is exeeded, Vj is removed from the

�o�ine� set V with no opportunity for inlusion in VH
(Lines 13 through 14). Else, VM Vj

is alloated, the server apaity is redued, and both V and VH
are updated aordingly

(Lines 15 through 18). Next, pages within the library Π are updated to ative, if they have

not been already, relative to VM Vj (Lines 19 through 21) and the iterator k is updated

(Line 22). Lastly, upon exiting the while loop, server Ω is alloated the subset VH
of VMs

whih represents the solution to the SAVMM problem (Line 23).

In the following, we present an example to show how G-SAVMM works. We onsider a

server with memory apaity C = 10 pages. There are twelve distint pages in the library Π

and four VM andidates for alloation onto the server. Figure 2.1 along with Table 2.2 show

the details of eah iteration k of G-SAVMM. The �rst olumn in both Figure 2.1 and Table 2.2

orresponds to the pre-proessing phase, where a san ours for idential, requested pages

within the set of VMs V. In Figure 2.1, page πj
i , (i = 1, . . . , 12 and j = 1, . . . , 4), is identi�ed

by a blok labeled by 1, if it is requested, and by 0, otherwise. The aggregate value of bloks

per VM orresponds to the total number of requested pages Kj . The highlighted bloks in

Figure 2.1, orrespond to idential pages found between the set of VMs, where Ai > 1. The

maximum value in A orresponds to the page that is shared the most among all the pages

in V. The e�ieny metri value is alulated for those VMs sharing this most shared page

(i.e., the page with the greatest Ai). Based on the values given in Table 2.2, the highest

e�ieny metri, 4.772, is assoiated with V4, and V4 is seleted for alloation to subset VH
.

The next iteration of G-SAVMM, orresponding to the �rst iteration of the greedy

phase, is illustrated in the seond olumn of both Figure 2.1 and Table 2.2. In this iteration, a

san ours for idential, requested pages between VMs and the ative pages within library Π.

One the initial VM has been seleted for alloation based on the e�ieny metri, the

provider ativates all pages within Π requested by the seleted VM. The ative pages are
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k = 0 k = 1 k = 2 k = 3

pj Kj S0
j E0j pj Kj S1

j E1j pj Kj S2
j E2j pj Kj S3

j E3j
V1 − − − − 6.00 3 0 3.000 6.00 3 1 3.464 6.00 3 1 3.464

V2 6.50 5 3 3.753 6.50 5 2 3.250 − − − − − − − −
V3 7.00 5 2 3.500 7.00 5 1 3.131 7.00 5 2 3.500 − − − −
V4 6.75 3 2 4.772 − − − − − − − − − − − −

Table 2.2: E�ieny Metri Calulation Example.

0 0 1 0 0 0 0 0 0 0 1 1V1

0 1 1 0 0 0 1 1 1 0 0 0V2

0 0 0 0 1 1 1 0 1 1 0 0V3

1 0 0 0 0 0 1 1 0 0 0 0V4

k = 0

0 0 1 0 0 0 0 0 0 0 1 1V1

0 1 1 0 0 0 1 1 1 0 0 0V2

0 0 0 0 1 1 1 0 1 1 0 0V3

k = 1

1 0 0 0 0 0 1 1 0 0 0 0V4

0 0 1 0 0 0 0 0 0 0 1 1V1

0 1 1 0 0 0 1 1 1 0 0 0V2

0 0 0 0 1 1 1 0 1 1 0 0V3

k = 2

1 0 0 0 0 0 1 1 0 0 0 0V4

0 0 1 0 0 0 0 0 0 0 1 1V1

0 0 0 0 1 1 1 0 1 1 0 0V3

k = 3

0 1 1 0 0 0 1 1 1 0 0 0V2

1 0 0 0 0 0 1 1 0 0 0 0V4

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10π11π12 π12π11π10π9π8π7π6π5π4π3π2π1 π1 π2 π3 π4 π5 π6 π7 π8 π9 π10π11π12 π1 π2 π3 π4 π5 π6 π7 π8 π9 π10π11π12

Π Π Π Π

1 1 2 0 1 1 3 2 2 1 1 1A

VH

Figure 2.1: G-SAVMM: Exeution Example.

identi�ed by bloks with diagonal line �lling underneath eah page πi from Π. The ative

pages orrespond to all pages from V4. The highlighted bloks for VMs in iteration k = 1,

orrespond to those pages that are idential to the ative pages in Π. Even though V1

does not share any ative pages with the ative pages in Π at k = 1, the e�ieny metri

is alulated and V1 may be onsidered a andidate for alloation sine at some k > 1,

there may be ative pages that are idential to pages in V1 in later alloations. The largest

e�ieny value is 3.250, whih orresponds to V2, and the new server apaity is 6. VM V2

onsists of six pages, where three of them are shared with the ative pages in Π and therefore

do not have to be aounted for against the apaity. G-SAVMM proeeds until k = 3, where

the remaining apaity is 1. The total revenue obtained by G-SAVMM is 20.25.

2.4 G-SAVMM Properties

In this setion, we determine the approximation ratio of G-SAVMM and haraterize

its omputational omplexity. To develop insight into the properties of G-SAVMM, we design

and analyze a worst-ase VM instane as follows. Let VW
denote an instane of the SAVMM

problem where VM Vĵ does not share any memory pages with the other VMs in VW
. Then,
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let at least one VM Vĵc ∈ VW
be omprised of pages whih are a omplement set of pages

to VM Vĵ . In addition, let the remaining VMs in VW
be omprised of either a subset of

pages in VM Vĵc or be equivalent to VM Vĵc . In either ase, the remaining VMs would be

alloated onto Ω if Vĵc were to be alloated �rst sine they all share the same memory pages

and would not redue apaity.

We investigate this instane on a server Ω with apaity C suh that either VM

Vĵ or VM Vĵc an be alloated, but not both. If VM Vĵc is alloated, then all remaining

VMs in VW \ {Vĵ}, will be alloated as well due to page sharing. Else, VM Vĵ is alloated

and utilizes the server resoure apaity enough to not allow any other VM to be alloated

from VW
. Our last onsideration of the problem instane VW

orresponds to revenue. G-

SAVMM is inherently sensitive to revenue values when alulating the e�ieny metri. In

the following theorem, we determine the approximation ratio for G-SAVMM based on the

worst ase instane VW
.

Theorem 2.4.1. The approximation ratio of G-SAVMM is M , where M is the number of

VMs.

Proof. Let the revenue obtained from an optimal solution be denoted as P ∗
. Then, let the

optimal set of VMs whih generate P ∗
from VW

be denoted by VW
OPT , where P

∗ =
∑

j:Vj∈VW
OPT

pj .

Let the revenue obtained by G-SAVMM be denoted by P , and the set of VMs whih generate

revenue P from VW
be denoted by VW

GRD, VW
GRD ⊂ VW

, where P =
∑

j:Vj∈VW
GRD

pj . At k = 0,

alloate VM Vĵ onto Ω; admitting E0j < E0
ĵ
. Then, by Equation 2.1,

pj
√

Kj − S0
j + 1

<

pĵ
√

Kĵ − S0
ĵ
+ 1

. Sine VM Vĵ does not share pages with VMs in VW
, S0

ĵ
= 0, resulting in

pj
√

Kj − S0
j + 1

<
pĵ

√

Kĵ + 1
, where

√

Kĵ + 1
√

Kj − S0
j + 1

pj < pĵ (2.2)
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establishes the lower bound for pĵ seleted aording to our e�ieny metri at k = 0. This

implies that for any pĵ greater than the established lower bound, VM Vĵ will be alloated

�rst onto Ω from VW
by G-SAVMM. Considering the server utilization of Vĵ and apaity C,

no other VM alloations an be performed and k stops at 0. Sine P =
∑

j:Vj∈VW
GRD

pj , the

aggregate revenue is expressed as P = pĵ .

Suppose that through an exhaustive searh, the optimal value P ∗
, is alulated

whereby VM Vĵc is alloated �rst onto Ω at k = 0. Sine every remaining VM in VW
is

omprised of a subset of pages in VM Vĵc, not inluding VM Vĵ, then the exhaustive searh

alloates all remaining VMs onto Ω from k = 1 to at most k = M − 1. Thus, the optimal

revenue expressed as P ∗ =
∑

j:Vj∈VW
OPT

pj implies P ∗ =
∑

j:Vj∈VW \{V
ĵ
}

pj. In order to determine

the approximation ratio for this instane of SAVMM, we must show that P ∗ ≤ Pα, where α

is the multipliative fator that will give the approximation ratio of G-SAVMM. Therefore,

P ∗

P
=

∑

j:Vj∈VW
OPT

pj
∑

j:Vj∈VW
GRD

pj
(2.3)

=

∑

j:Vj∈VW \{V
ĵ
} pj

pĵ
(2.4)

By substituting pj from Eq. 2.2, we further determine

P ∗

P
<

∑

j:Vj∈VW \{V
ĵ
}

√
Kj−Sk

j +1√
K

ĵ
+1

pĵ

pĵ
(2.5)

=
∑

j:Vj∈VW \{V
ĵ
}

√

Kj − Sk
j + 1

√

Kĵ + 1
(2.6)

=
1

√

Kĵ + 1

∑

j:Vj∈VW \{V
ĵ
}

√

Kj − Sk
j + 1 (2.7)

For k > 0 and ∀ VM Vj ∈ VW \ {Vĵ}, Sk
j will be at least 1 when VM Vĵc is alloated

�rst onto Ω. Every remaining VM in VW \{Vĵ}, will be alloated onto Ω, where the remaining
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VMs may only onsist of a single shared page with Vĵc in the worst ase. Then,

P ∗

P
≤ 1

√

Kĵ + 1

∑

j:Vj∈VW \{V
ĵ
}

√

Kj − 1 + 1 (2.8)

=
1

√

Kĵ + 1

∑

j:Vj∈VW \{V
ĵ
}

√

Kj (2.9)

Following the alloation of VM Vĵc , we onsider M − 1 maximum number of VMs

left to alloate in the optimal solution. Sine VM Vĵc exists and is the omplement page set

to Vĵ , then for N pages, 1 ≤ Kĵ ≤ N − 1. In addition, sine there exists at least 1 shared

page index between Λj and Λĵc ∀j : Vj ∈ VW \ {Vĵ}, then for Kj = 1 we have

P ∗

P
≤ (M − 1)

√
1

√

Kĵ + 1
=

M − 1√
2
≤M − 1 < M (2.10)

Therefore,

P ∗

P
is bounded by α = M , whih results in an approximation ratio of M

for the G-SAVMM algorithm.

We now investigate the time omplexity of G-SAVMM. The running time is dominated

by the seond phase, the greedy phase. The while-loop (Algorithm 2 Line 3) may exeute

a maximum of M − 1 iterations sine one VM has already been inserted into VH
. Within

the while-loop, the running time is dominated by the searh and alulation of shared pages

between the VMs in V and the ative pages on Ω (Algorithm 2 Lines 5 through 8). The

searh and alulation are exeuted a maximum ofM−1 times, orresponding to the possible

number of VMs at k = 1, by the number of ative pages to searh on Ω, thus the running

time is O(N(M − 1)). Then, the running time for the entire greedy phase is O(N(M − 1)2).

Thus, G-SAVMM has an asymptoti running time of O(NM2) whih is linear in the total

number of pages and quadrati in the total number of VMs in the set of �o�ine� VMs.

2.5 Experimental Results.

In this setion, we perform extensive experiments investigating the performane of

G-SAVMM against other VM alloation algorithms onsidering their obtained revenue and

the utilization of the server's memory.
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2.5.1 Experimental Setup

We perform our experiments on a 2.4 GHz Intel Core

R©
i7-3630 QM CPU 64-bit

system. All simulations are implemented in C++ and are ompiled with GCC Version 4.9.0.

Our evaluation of G-SAVMM onsists of omparing its performane against two other VM

alloation algorithms: (i) Highest Revenue (HR-Oblivious); and, (ii) Maximum Shared Pages

(MS-Sharing). The �rst alloation algorithm, HR-Oblivious, is a greedy algorithm whih

alloates VMs in dereasing order of their revenue and is page sharing oblivious. The seond

alloation algorithm, MS-Sharing, is a greedy algorithm whih alloates VMs in dereasing

order of their number of shared pages. The page sharing onsideration in MS-Sharing mirrors

that of G-SAVMM, but it does not take into aount the revenue.

Our environment assumes page sharing within eah simulation we evaluate. We on-

sider the degree of sharing among the VMs and ategorize the SAVMM instanes into four

ategories, alled sharing strati�ations: (i) Low-Share (no greater than 20% of the ative

pages on the server are shared with VMs); (ii) Mid-Share (no greater than 50% of the ative

pages on the server are shared with VMs); (iii) High-Share (no greater than 80% of the

ative pages on the server are shared with VMs); and, (iv) Full-Share (approx. all ative

pages on the server are shared with VMs). Our experiments onsist of 1000 simulations per

sharing strati�ation. In our simulations, eah sharing strati�ation is de�ned within the

following ranges: (i) 15%−20% for Low-Share; (ii) 38%−50% for Mid-Share; (iii) 70%−80%

for High-Share; and, (iv) 92%−99% for Full-Share.

Eah instane of SAVMM onsidered in the simulation onsists of 10 VMs. Eah

VM is assigned a revenue value randomly ranging from $1 to $20. The number of pages

is also generated randomly with a maximum of 1000 pages possible per VM. Our server

apaity C is �xed at 60% of the total number of pages for eah simulation. Based on our

experiments, operating at 60% apaity provides enough resoures to aommodate a wide

variety of simulations.
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Our riterion for identifying the best performing algorithm is based on the alulation

of revenue ratios. In our experiments, we exeute the three greedy algorithms HR-Oblivious,

MS-Sharing and G-SAVMM on instanes of the SAVMM problem. The set of VMs therein

will vary in their revenue generated from being hosted aording to the range spei�ed in the

previous paragraph. Comparing then aggregating the atual values of the revenue generated

by eah of these greedy algorithms over a number of simulations is arti�ial sine it may

mislead the attainment of a de�ned value of revenue. Instead, we ompare the revenues

generated by eah greedy algorithm over the maximum revenue generated in that instane

and aggregate those ratios for a spei� number of simulations. For example, suppose after

simulating an instane of the SAVMM problem, HR-Oblivious generates a revenue value of

100, MS-Shaing generates a revenue value of 200 and G-SAVMM generates a revenue value of

250. Then, the maximum revenue generated in that instane would be 250. The alulated

revenue ratios would be .4, or

100

250
, for HR-Oblivious, .8, or

200

250
, for MS-Sharing and 1,

or

250

250
, for G-SAVMM. The revenue ratios indiate eah greedy algorithm's proximity to

the maximum revenue attained in that instane. These revenue ratios will never be larger

than 1 for any of the algorithms in any instane. By aggregating these ratios over 1000

simulations, we identify the best performing algorithm as the one with the highest revenue

ratio aggregate. The revenue ratio aggregate for eah algorithm over the ourse of 1000

simulations will never be larger than 1000. In addition, these 1000 simulations are performed

for eah sharing strati�ation to determine the best performing algorithm under the various

sharing senarios.

2.5.2 Analysis of Results

We now ompare the performane of G-SAVMM against both HR-Oblivious and MS-

Sharing algorithms. In Figure 2.2, we plot the aggregate revenue ratios of all three algorithms

under di�erent sharing strati�ations. For sharing strati�ations Low-Share, Mid-Share and

High-Share, G-SAVMM outperforms both HR-Oblivious and MS-Sharing algorithms. In Low-

Share, G-SAVMM resulted in either the revenue maximum over or equal to the revenues
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Figure 2.2: G-SAVMM: Revenue Ratios vs. Sharing Strati�ations.

obtained using HR-Oblivious and MS-Sharing, in 852 of the 1000 simulations. In Mid-Share,

G-SAVMM resulted in either the revenue maximum over or equal to the revenues obtained

using HR-Oblivious and MS-Sharing in 875 of the 1000 simulations. In High-Share, G-SAVMM

resulted in either the revenue maximum over or equal to the revenues obtained using HR-

Oblivious and MS-Sharing in 816 of the 1000 simulations. In the Low-Share and Mid-Share

strati�ations, our experiments have shown that HR-Oblivious outperforms MS-Sharing. In

the High-Share and Full-Share strati�ations, our experiments have shown that MS-Sharing

outperforms HR-Oblivious. As the sharing potential in the strati�ation inreases, MS-Sharing

generates an inreased revenue sine more VMs may be alloated. In the Full-Share strati-

�ation, G-SAVMM and MS-Sharing generate the same revenue resulting in a revenue max-

imum in 1000 out of 1000 simulations. Based on our results, G-SAVMM attains a revenue

ratio aggregate of: (i) 993.2759 for Low-Share; (ii) 994.0514 for Mid-Share; (iii) 992.9242
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Figure 2.3: G-SAVMM: Capaity Ratios vs. Sharing Strati�ations.

for High-Share; and, (iv) 1000 for Full-Share. When a simulation ontains VMs with full-

sharing potential, G-SAVMM or MS-Sharing returns the same result. When the simulated

instane onsists of VMs with less opportunity to share pages, G-SAVMM is the preferred

algorithm with respet to revenue maximization. Therefore, aording to our experiments,

G-SAVMM should be the hosen algorithm for solving SAVMM. In Figure 2.3, we plot the

aggregate remaining memory apaity ratios, after the VMs have been alloated, for all three

algorithms under di�erent sharing strati�ations. We have shown the e�ay of G-SAVMM

for revenue maximization now we show that from the point of view of preserving resoures,

G-SAVMM also performs well. The remaining apaities are slightly larger for HR-Oblivious

in the Low-Share and are larger for MS-Sharing in Mid-Share and High-Share. The signi�-

ant di�erenes between these algorithms our in the Full-Share strati�ation. MS-Sharing

dominates the amount of unused apaity with G-SAVMM also experiening a higher unused



www.manaraa.com

34

apaity; albeit not as signi�ant as MS-Sharing, yet well above HR-Oblivious. Therefore,

hoosing G-SAVMM as the algorithm for solving SAVMM leads to a onsiderable saving of

memory whih an be utilized for other purposes.

2.6 Summary

We designed a sharing-aware greedy approximation algorithm (G-SAVMM) for solv-

ing the sharing-aware VM maximization problem. We showed that G-SAVMM is a M-

approximation algorithm, whereM is the number of VM instanes. The experimental results

show that G-SAVMM outperforms two other VM alloation algorithms in terms of generated

revenue.
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CHAPTER 3: MULTI-RESOURCE VM MAXIMIZATION

3.1 Introdution

Virtualization embodies all the positive harateristis of a tehnology that minimizes

administrative e�ort, energy onsumption, and infrastruture investment. The proess of vir-

tualizing appliations, servers, networks, et., as a servie bene�ts onsumers and providers

alike. Consumers enjoy the ful�llment of their requests and are proteted, in a sense, by Ser-

vie Level Agreements (SLAs) that de�ne Quality of Servie (QoS) guarantees. Providers,

on the other hand, must ensure that essential resoures are thoroughly available and that

they generate the highest revenue from providing the servies.

Cloud servie providers fae many hallenges onerning the availability of resoures

to host user spei�ed servies. One of the major hallenges is how to alloate and manage

resoures in large sale systems suh that the revenue is maximized and the user requests

are satis�ed. To meet these hallenges, several platforms and systems have been developed

and presented in the researh literature. An example of suh a platform is Mesos [43℄,

whih allows sharing of luster resoures among various luster omputing frameworks. A

more reent example is Borg [96℄, Google's large sale luster management system, whih

shedules requests on what may well be the largest servie infrastruture in the world [67℄.

While these systems represent signi�ant ontributions to resoure management in large sale

systems, both works identify extensions in searh of greater e�ieny, that is, leveraging

more information about resoure o�erings in the ase of Mesos and in the ase of Google's

next-generation ontainer management system, Kubernetes [39℄.

Resoure-based sharing, whih lies at the heart of virtualization, is a way for servie

providers to alleviate sarity, improve utilization and make available an enormous amount

of servies to users. In this hapter, we fous our attention on exploiting the bene�ts of

sharing memory pages among o-loated VMs. Sharing at the level of memory pages, page

sharing, is a standard memory relamation tehnique where the hypervisor removes iden-

tial memory pages between the o-loated VMs and manages a single page to be shared



www.manaraa.com

36

between them. Hypervisors use an assortment of memory relamation tehniques, e.g., bal-

looning, ompression, swapping, et., to onserve the memory resoure and implement them

in di�erent ways. For instane, the Xen hypervisor [6℄ manages the sharing of pages at the

appliation level, whereas IBM's PowerVM [23℄ manages page sharing at the logial partition

level. If servie providers an adapt their priing for servies on the utilization and sharing

of resoures, then the potential for higher revenues ould be inreased due to attrating more

onsumers to portions of resoures whih have been freed by sharing.

In this hapter, we address the multi-resoure sharing-aware virtual mahine maxi-

mization (MSAVMM) problem. The MSAVMM problem requires determining the set of VMs

that an be instantiated on a given server suh that the revenue derived from hosting the

VMs is maximized. The solution to this problem takes into aount the sharing of memory

pages among the VMs and the available apaity of eah type of resoure requested by the

VMs. If memory sharing is not onsidered, a loud provider ould employ lassial multidi-

mensional knapsak algorithms (with the knapsak as the server and the items as the VMs)

to solve the virtual mahine maximization problem. The lassial knapsak algorithms [52℄

assume that items are distint and are haraterized by dimension and weight. When the

items are treated as non-distint and an be shared, as is the ase for MSAVMM, the lassi

knapsak algorithms produe alloations whih generate less revenue than speially designed

sharing-aware algorithms. Our fous is on designing suh sharing-aware algorithms that

solve MSAVMM.

3.1.1 Our Contribution

We formulateMSAVMM as a multilinear binary program and optimally solve for max-

imized revenue in the ase of small instanes. Sine solving the multilinear program is not

feasible for large sale instanes of MSAVMM, we propose and design a greedy approximation

algorithm for solving MSAVMM. The algorithm alloates a set of requested VM instanes to

the server resoure suh that the revenue of the provider is maximized while the sharing of

memory pages and the onstraints on the apaity of eah type of resoure are taken into
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aount. The greedy order employed by the algorithm is based on an e�ieny metri that

onsiders multiple types of resoures and the page sharing potential among the VMs. We

analyze the properties of our proposed greedy algorithm and determine its approximation

ratio. Lastly, we investigate the performane of our proposed algorithm by omparing it with

the performane of several other greedy alloation algorithms on Google luster workload

traes [83℄. To the best of our knowledge, no multi-resoure sharing-aware greedy approx-

imation algorithms for solving the MSAVMM problem have been proposed in the researh

literature to date.

3.1.2 Related Work

Previous researh on the VM resoure alloation problem has foused on the opti-

mization of various utility funtions under multiple VM resoure onstraints and on the

design of inentive-based mehanisms for VM alloation. Wei et al. [100℄ investigated phys-

ial mahine (PM) provisioning for Infrastruture as a Servie (IaaS) louds and argued

that servie providers should o�er �exible resoure ombinations when hosting VMs. Their

researh also suggested that the use of a single resoure-type provisioning sheme by loud

providers when multiple resoure types are requested, leads to PM over-provisioning and

limits resoure utilization. Therefore, the authors have developed a dynami multiple re-

soure provisioning approah whih optimizes resoure utilization for IaaS loud providers.

Minarolli and Freisleben [66℄ investigated the alloation of VMs requesting multiple resoure

types in IaaS louds. Their proposal employs a utility funtion whih maximizes the qual-

ity of servie (QoS) and the servie provider's revenue through resoure managers running

on PMs. The use of aution-based mehanisms for the VM alloation problem onsidering

multiple resoure types has been investigated by several researhers. Zaman and Grosu [107℄

designed ombinatorial aution-based greedy mehanisms for VM provisioning and alloation

in louds. Nejad et al. [70℄ proposed a family of truthful greedy heuristi mehanisms for

dynami VM provisioning for the aution-based model. Mashayekhy et al. [64℄ formulated

a PTAS mehanism for the provisioning and alloation of heterogeneous loud resoures.
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While these alloation methods do take multiple resoures into onsideration, they do not

take into aount the bene�ts of page sharing in their design and implementation.

Dominant Resoure Fairness (DRF) has reeived signi�ant attention in establishing

fair resoure alloation when multiple resoures are requested. Ghodsi et al. [33℄ were the

�rst to propose the Dominant Resoure Fairness (DRF) alloation poliy for multiple types of

resoures in lusters. DRF poliy satis�es a number of desired properties inluding strategy-

proofness, envy-freeness, and Pareto-e�ieny. It also inentivizes the sharing of resoures

by guaranteeing that no request is better o� if the resoures are equally partitioned among

the set of users' requests. Dolev et al. [27℄ onsidered an alternative fairness riterion for

alloation of multiple resoures and proved that fairness is guaranteed by any ombination

of user requests under multiple bottleneks. Wang et al. [99℄ extended the DRF poliy

onept to multiple heterogeneous server resoures in a loud environment. Wong et al. [47℄

investigated the fairness-e�ieny trade-o� of alloating multiple resoures in data-enters.

Even though the above works onsidered multiple resoure types, they did not onsider page

sharing when deiding the alloation.

The majority of researh on page sharing foused on developing page sharing sys-

tems. Bugnion et al. [15℄ proposed the transparent page sharing tehnique for minimizing

redundany and memory overhead. Wood et al. [101℄ proposed Memory Buddies, a sharing-

aware VM memory alloation system whih uses the VMWare ESX Server to identify page

sharing opportunities. This is ahieved by employing hashing algorithms that apture the

potential for sharing between multiple VMs. Commerial systems suh as VMWare's ESX

Server [5℄ enable transparent page sharing in addition to other memory relamation teh-

niques [98℄. The open soure Xen hypervisor [6℄, has inorporated page sharing in Versions

4.0 and above for Hardware Virtual Mahines (HVM) [76℄. Gupta et al. [41℄ developed the

Di�erene Engine system whih inorporates sub-page sharing, i.e., sharing pages that are

nearly idential, and uses ompression tehniques for pages that are not similar, thereby

further reduing the overall memory footprint. Pan et al. [71℄ proposed the use of a memory
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de-dupliation engine in oordination with a hypervisor to promote the sharing of memory

among the o-loated VMs. Our work fouses on developing sharing-aware VM alloation

algorithms that maximize the revenue obtained from hosting the VMs and take into aount

page sharing.

To the best of our knowledge, the existing researh on the design and analysis of

sharing-aware VM alloation algorithms onsists of only one paper by Sindelar et al. [86℄,

who introdued and investigated VM paking and maximization problems under hierarhi-

al sharing models. They developed several algorithms to solve these problems assuming

hierarhial sharing models. Our researh on the sharing-aware VM maximization problem

fouses on the general sharing model whih di�ers from Sindelar et al. [86℄. By fousing on

the general sharing model, further memory relamation an our when VMs request similar

operating systems with di�erent overlapping subsets of appliations or libraries, whih are

not aptured by hierarhial models. In Chapter 2 and our previous paper [78℄, we developed

a greedy algorithm for solving the sharing-aware VM maximization problem where only one

type of resoure, the memory, is onsidered. Moreover, both ontributions [86℄ and [78℄ do

not onsider the alloation of multiple types of resoures.

3.1.3 Organization

The rest of this hapter is organized as follows. In Setion 3.2, we de�ne the multi-

resoure sharing-aware VM maximization problem. In Setion 3.3, we formulate MSAVMM

problem as a binary multilinear program. In Setion 3.4, we present our proposed greedy

algorithm for solving the MSAVMM problem. In Setion 3.5, we determine the approxima-

tion ratio of our proposed greedy algorithm. In Setion 3.6, we desribe the experimental

setup and investigate the performane of our proposed algorithm by performing extensive

experiments on Google Cluster Usage trae data [83℄. In Setion 3.7, we summarize our

results and present diretions for future researh.
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3.2 Multi-Resoure Sharing-Aware VM Maximization

We now present the MSAVMM (Multi-resoure Sharing-Aware Virtual Mahine

Maximization) problem from the perspetive of a servie provider.

The alloation of multiple VMs that share a PM resoure is ontrolled by the hyper-

visor software layer maintained by the servie provider. The proess of memory relamation

between the physial resoure and the requesting VMs is also managed by the hypervisor.

Moreover, the hypervisor is the only agent that has the ability to translate pages from PM

to VM and/or VM to VM. We assume the use of an external mehanism, outside of, but in

oordination with the hypervisor, apable of managing a library of memory pages, denoted

by Π, required for the servies o�ered by the provider. The use of an external mehanism,

outside of, but in oordination with the hypervisor was proposed by Pan et. al [71℄. Suh an

approah allows for servie �exibility and minimizes any performane degradation resulting

from taxing the hypervisor more than it is neessary. The mehanism runs onurrently

with the hypervisor on the PM server Ω that provides the resoures. The instantiation of a

VM implementing a virtualized servie o�ered by the provider, requires a given number of

memory pages. In order to identify the memory pages within Π, we denote by πi
, the i-th

memory page in Π. We assume that Π manages a �nite number N of pages, i.e., Π =

N
⋃

i=1

{πi}.

The notation used in this hapter is presented in Table 3.3.

We assume that there is a set V of M VMs that are andidates for instantiation.

We all this set, the set of "o�ine" VMs. We denote by Vj, the VM instane j, where

j = 1, . . . ,M , and Vj ∈ V, and by πi
j , the i-th memory page required by VM Vj . The

provider alloates and instantiates a subset of VMs, denoted by VH
, onto Ω. The alloation

should be determined based on how e�ient in terms of revenue it is to alloate a VM

given the availability of PM resoures. In general, our model an handle any number of

resoure types, but for simpliity of presentation and the relevane to pratial settings,

we spei�ally onsider three main types of resoures: (i) memory, where the PM memory

apaity is denoted by Cm
; (ii) virtual CPUs (vCPUs), where the PM vCPU apaity is
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Table 3.3: MSAVMM Notation.

Expression Desription

Π Library of pages under provider's management.

N Number of memory pages under provider's management.

Vj Virtual mahine j.

V Set of "o�ine" VMs.

M Number of "o�ine" VMs.

VH
Subset of VMs maximizing provider's revenue, VH ⊂ V .

πi
The i-th memory page under provider's management.

skj Number of pages VM Vj shares at iteration k.

Ai
Shared page ounter among M VMs for the i-th page.

πi
j The i-th memory page requested by VM Vj .

pj revenue generated from alloating VM Vj .

Ω Provider's PM server resoure.

Cm
Memory apaity (RAM) of PM server resoure Ω (GB).

Cu
vCPU apaity of PM server resoure Ω (ores).

Cs
Storage apaity of PM server resoure Ω (GB).

R Subset of PM resoure types u and s, R = {u, s}.
qmj Requested amount of memory (RAM) by Vj (GB).

quj Requested number of vCPU by Vj (ores).

qsj Requested amount of storage by Vj (GB).

Ek
j E�ieny metri of VM Vj at iteration k.

P(V) Power set of the set of �o�ine� virtual mahines V .
I Index of �o�ine� virtual mahines in P(V).

denoted by Cu
; and (iii) storage, where the PM storage apaity is denoted by Cs

. We

denote by R the subset of resoure types omposed of vCPUs (type denoted by u) and

storage (type denoted by s), that is, R = {u, s}. We do not inlude the memory resoure

type in R sine it is treated di�erently, due to page sharing. Eah VM Vj requires a given

amount of eah resoure type as follows: qmj amount of memory, quj amount of vCPUs, and

qsj amount of storage. We assume that the requests for resoures from any single VM an be

satis�ed by the provider (i.e., qmj ≤ Cm
, quj ≤ Cu

, and qsj ≤ Cs
, for any j = 1, . . . ,M). We

now introdue the MSAVMM problem as follows:

MSAVMM problem: Given a set of M "o�ine" VMs V, with eah VM Vj yielding

a revenue pj upon alloation of the required amount of memory, qmj , number of

vCPUs, quj , and amount of storage, qsj , determine a subset VH ⊂ V of VMs that

an be alloated onto server Ω, onsidering the PM memory apaity Cm
, the

available number of vCPUs, Cu
, the PM storage apaity, Cs

, and the sharing
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of memory pages, suh that the total revenue, P =
∑

j:Vj∈VH

pj , obtained by the

provider is maximized.

The formulation of MSAVMM is novel in that it onsiders the alloation of multiple types

of resoures and, most importantly, it onsiders page sharing for the memory resoure. If

the formulation disregarded page sharing, then the problem ould have been redued to

the standard multi-dimensional knapsak problem [52℄, for whih the VMs are the items

and the PM is the multi-dimensional knapsak (with dimensions given by the apaities of

the multiple resoure types). Existing algorithms for solving the multi-dimensional knapsak

problem would not be appropriate for solving MSAVMM, leading to revenue loses. MSAVMM

represents a new lass of multidimensional-knapsak problems with overlapping items.

By onsidering page sharing, more VMs may be alloated to utilize more e�iently

the memory resoure. Therefore, the servie provider may inrease its potential for revenue

as a result of implementing sharing-aware based alloations. To the best of our knowledge,

no algorithms for solving the multi-resoure sharing-aware VM alloation problem have been

proposed in the literature.

3.3 Binary Multilinear Program Formulation

In this setion, we propose a multilinear programming formulation of MSAVMM. The

objetive of the servie provider is to instantiate a number of VMs whih maximizes the

revenue relative to the amount of available resoures. Therefore, we formulate the MSAVMM

problem as a binary multilinear program (BMP), alled BMP-MSAVMM, as follows:

maximize: P =
∑

j:Vj∈V

pjxj (3.1)

subjet to:

∑

j:Vj∈V

qrjxj ≤ Cr, ∀ r ∈ R (3.2)

∑

I∈P(V)

(−1)(|I|+1)σI

∏

k∈I

xk ≤ Cm
(3.3)

xj ∈ {0, 1}, ∀ j : Vj ∈ V. (3.4)
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The solution to this problem is a boolean deision vetor x ∈ {0, 1}M , where xj

orresponds to servie provider's deision to instantiate Vj, i.e., xj = 1, if Vj is instantiated,

and xj = 0, otherwise. The objetive funtion in Equation (3.1) orresponds to revenue, P ,

aggregated from the subset of instantiated VMs. The onstraint in Equation (3.2) ensures

that the subset of instantiated VMs do not request more resoures than the servie provider

has available, that is, Cr
, where r = u for vCPUs, and r = s for storage. The onstraint in

Equation (3.3) ensures that the subset of instantiated VMs does not request more memory

than the servie provider has available and takes into aount the relaimed memory through

page sharing. Lastly, the onstraint in Equation (3.4) expresses the fat that xj 's are binary

deision variables.

The onstraint in Equation (3.3) requires a more detailed explanation sine it aptures

the sharing of memory pages. To explain it, we onsider an example in whih four VMs

request instantiation onto the server, where the requested resoures are given in the seond

olumn of Table 3.4. We onsider that only a total of 16 di�erent pages (π1
, π2

, . . . , π16
)

are going to be requested by these VMs.

Vj < qmj , quj , qsj , pj > |I| = 1 |I| = 2 |I| = 3 |I| = 4

V1 < 4, 1, 2, 0.95 > σ1 : 4 σ12 : 3 σ123 : 2 σ1234 : 1
V2 < 5, 1, 2, 1.05 > σ2 : 5 σ13 : 3 σ124 : 2
V3 < 7, 2, 2, 1.35 > σ3 : 7 σ14 : 3 σ134 : 2
V4 < 14, 4, 2, 1.80 > σ4 : 14 σ23 : 2 σ234 : 1

σ24 : 4
σ34 : 5

Table 3.4: VM Charateristis and Sharing Relationships.

The pages requested by eah of the four VMs are given in Figure 3.1. For example

V1 requests a total of 4 pages (pages marked with hathed boxes in Figure 3.1, the row

orresponding to V1). The vertial bold lines onneting the hathed boxes in the �gure

mark the pages that are shared. For example, page π2
is required by V1, V2 and V3, and
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V1 : q
m
1

V2 : q
m
2

V3 : q
m
3

V4 : q
m
4

Π

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13 π14 π15 π16

Figure 3.1: Page Sharing Among VMs.

thus, the hathed boxes orresponding to it in the three VMs are onneted with a vertial

bold line indiating that π2
is shared among the three VMs.

We now show how the sharing parameter σI used in onstraint (4.7) is determined.

We denote by P(V) the power set of the set V of available VMs and by I an element of

the power set V. The sharing parameter represents the number of shared pages among the

VMs in set I. For example for I = {1, 2, 3}, σ123 = 2, that is, two pages, π2
and π5

, are

shared among the three VMs onsidered. We alulate the sharing parameter σI for all the

sets I of the power set P(V) and organize them by the ardinality of I in Table 3.4. When

|I| = 1, the sharing parameter σI represents the amount of memory resoure qmj in number

of pages requested by Vj, that is, σj = qmj . By ombining the set of values representing the

number of shared pages and the number of pages required by eah VM, we an dedue the

number of unique pages, i.e., those pages whih are required to instantiate a subset of VMs,

are managed only one in Π, and are available to be shared among requesting VMs. To

alulate the number of unique pages in Equation (3.3) we need to introdue an adjustment

parameter, (−1)(|I|+1)
, whih adjusts the alulation of the number of unique pages aording

to the ardinality of I. By referening the data in Table 3.4, we an alulate how many

unique pages are required in order to instantiate the entire set of VMs and ompare this
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value to the available servie provider's memory apaity Cm
as follows:

(+1)(σ1 + σ2 + σ3 + σ4) +

(−1)(σ12 + σ13 + σ14 + σ23 + σ24 + σ34) +

(+1)(σ123 + σ124 + σ134 + σ234) + (−1)(σ1234) ≤ Cm

(3.5)

By substituting the values for σI from Table 3.4 and performing the alulation above

in Equation 3.5, we arrive at 16 unique pages whih is onsistent with the number of grey

boxes, i.e., those pages required to be managed by Π in order to instantiate all four VMs,

from Figure 3.1. In order for the servie provider to support the memory requests of all

four VMs, they would have to have an available memory apaity whih an support the

management of at least 16 pages. In most ases, only a subset of the VMs may be hosen for

instantiation based on the servie provider's memory resoure. Therefore, the onstraint in

Equation (3.3) onsists of the produt of boolean deision variables, xk, where k is an index

orresponding to any VM within the VM subset ombination I, on the sharing parameter

σI , and the unique page adjustment parameter (−1)(|I|+1)
.

In order to solve BMP-MSAVMM, we use the AMPL [30℄ mathematial programming

framework and an open-soure solver, Couenne [8℄, apable of produing exat solutions for

BMP-MSAVMM. Couenne employs a branh & bound algorithm for solving mixed integer

nonlinear programs; whih lends to our multilinear binary formulation. The onstraint in

Equation (3.3) of BMP-MSAVMM makes it a mixed integer nonlinear program. We submit

our model, data, and preferene for solver to NEOS [24℄, an internet-based optimization

servie, whih solves BMP-MSAVMM.

We solved the BMP-MSAVMM instane in the example given in Table 3.4, and the

solution onsists of instantiating V1, V2 and V4, generating $4.05 as the optimal revenue.

The exeution takes approximately 9.6 milliseonds. The exeution time inreases dramat-

ially for larger instanes, for example for an instane of MSAVMM with 20 VMs and 256

pages, the exeution time exeeds 20 minutes. These solvers an only be used for solving

small instanes of MSAVMM; for solving large instanes of MSAVMM, we need to rely on
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approximation algorithms. BMP-MSAVMM problem is a new and more omplex variant of

the multidimensional knapsak problem whih is strongly NP-hard [52℄. Therefore, we infer

that BMP-MSAVMM is also strongly NP-hard.

3.4 Greedy Approximation Algorithm (G-MSAVMM)

In this setion, we present the design of our greedy algorithm for solving theMSAVMM

problem. Our algorithm orders the andidate VMs aording to an e�ieny metri whih

onsiders the revenue of alloating the VMs, the apaity of the multiple resoure types

(e.g., memory, vCPU and storage), and the potential for page sharing. Sine the fous is

on maximizing the revenue of the servie provider, the metri should take into aount the

revenue as the main fator. After eah alloation, the e�ieny metri is realulated and

the greedy order is adjusted aordingly. Eah alloation represents an iteration (denoted

by k) of the greedy alloation proess. The e�ieny metri, Ek
j , orresponding to VM Vj

at iteration k is de�ned as follows:

Ek
j =

pj
√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

(3.6)

The e�ieny metri Ek
j represents the relative value of alloating VM Vj onto Ω

by onsidering the revenue, the number of resoure types requested, and the potential for

sharing pages. More spei�ally, the e�ieny metri represents the unit prie per normalized

resoure.

The initial step in the alloation proess, at iteration k = 0, selets the �rst VM to be

alloated onto Ω, based on the order indued by the e�ieny metri. More spei�ally, it

alloates �rst the VM that has the maximum value for the e�ieny metri. The e�ieny

metri at k = 0 for all Vj ∈ V depends on the number of shared pages, skj , relative to all

Vj ∈ V, sine no other VMs have been alloated yet to share pages. At later iterations (i.e.,

k > 0) the e�ieny metri onsiders the potential for sharing among the andidate VM and

the VMs that are urrently sheduled to be alloated (i.e., VMs that are urrently in VH
).
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Algorithm 3 G-MSAVMM: Phase I

1: Input: Set of o�ine VM instanes (V)
2: {Phase I: Initial VM Alloation based on the potential for page sharing in V}
3: [A℄ ← 0

4: VH ← ∅
5: ĩ, j̃ ← 0
6: for i = 1, . . . , N do

7: for all j : Vj ∈ V do

8: if (ativePage(πi
j)) then

9: Ai = Ai + 1

10: ĩ = argmax
i

{Ai}
11: for all j : Vj ∈ V do

12: if (ativePage(πĩ
j)) then

13: VH = VH ∪ {Vj}
14: for i = 1, . . . , N do

15: for all j : Vj ∈ VH
do

16: if (Ai > 1) and (ativePage(πi
j)) then

17: s0j = s0j + 1

18: for all j : Vj ∈ VH
do

19: E0
j =

pj
√

∑

r∈R

qr
j

Cr +
qm
j
−s0

j
+1

Cm

20: j̃ = argmax
j

{E0
j }

21: VH = {Vj̃}
22: V = V \ {Vj̃}
23: [Cm

, Cu
, Cs

℄ = [Cm
, Cu

, Cs
℄ - [qm

j̃
, qu

j̃
, qs

j̃
℄

24: for i = 1, . . . , N do

25: if (ativePage(πi
j̃
)) then

26: alloatePage(πi
)

27: k ← 1

An interesting property of our e�ieny metri is that as k inreases, skj ≤ sk+1
j , that is, the

potential for sharing monotonially inreases with k, for any k > 0.

We now desribe the proposed algorithm, alled G-MSAVMM, for solving theMSAVMM

problem. The algorithm is presented in phases by Algorithm 3 and Algorithm 4. G-MSAVMM

onsists of two phases distinguished by how the potential for sharing is determined. In the

�rst phase (Algorithm 3), the potential for page sharing is determined onsidering the shar-

ing among all the VMs in the o�ine set of VMs, V. In the seond phase (Algorithm 4), the

potential for sharing is determined by onsidering the sharing among the andidate VM and

the VMs that are urrently sheduled to be alloated onto Ω.
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The input to G-MSAVMM in Algorithm 3 is a set of �o�ine� VMs, V. First, G-

MSAVMM initializes the shared page ounter array, A, (Line 3), the subset of alloated VMs,

VH
, (Line 4), and the indies used for seleting VMs (Line 5). The shared page ounter array

A is used to determine the potential for sharing pages among the VMs in V, that is, entry

Ai
is the number of ourrenes of page πi

requested by the VMs in V. The pages requested

by the VMs in V are identi�ed and A is updated aordingly (Lines 6 through 9). Funtion,

ativePage() (Line 8), determines whether memory page πi
j from VM Vj is requested. If π

i
j

is requested, then ativePage() returns 1, otherwise it returns 0. The ativePage() funtion

uses information from a pre-proessing stage in whih the loud provider uses a set of staging

PMs to instantiate the requested VMs and determine their memory �ngerprints. The loud

provider ould implement a memory �ngerprinting tehnique similar to the one presented by

Wood et al. [101℄. Then, the i-th memory page that is requested the most, is seleted, and

every Vj whih requests the i-th memory page is inluded in the VM subset VH
(Lines 10

through 13). The next task is to alulate the number of shared pages for eah Vj ∈ VH
. If

there are memory pages shared by at least two VMs, (i.e., Ai > 1), and Vj requests the i-th

memory page, then the VM shared page ounter at the initial iteration s0j is updated (Lines

14 through 17). Then, our proposed e�ieny metri is alulated for eah Vj ∈ VH
(Lines 18

and 19), where the VM orresponding to the highest e�ieny value is identi�ed by index j̃

(Line 20). Vj̃ is then alloated to VH
(Line 21) and removed from V (Line 22). The three PM

resoure apaities are then redued by the amount of resoure requests from Vj̃ (Line 23).

Note, we do not add the shared pages sk
j̃
bak into the PM resoure apaity Cm

sine at

k = 0, Vj̃ is the �rst VM alloated and only has a potential for sharing pages with other VMs

to be alloated later. Any memory pages whih are deemed ative aording to ativePage()

are then alloated onto PM server Ω through alloatePage() (Lines 24 through 26). After

the initial alloation aording to the potential for sharing, k is updated to 1 (Line 27).

The seond phase of G-SAVMM in Algorithm 4 starts by heking the availability

of resoures of eah type on the server Ω (Line 3). A variable flag is set to 1 (Line 4)
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Algorithm 4 G-MSAVMM: Phase II

1: {ontinued . . . }

2: {Phase II: VM Alloation based on expliit page sharing in VH
}

3: while ([Cm
, Cu

, Cs
℄ > 0) and (|V| > 0) do

4: flag ← 1
5: for i = 1, . . . , N do

6: for all j : Vj ∈ V do

7: if (ativePage(πi
j)) and (ativePage(πi

)) then

8: skj = skj + 1

9: for all j : Vj ∈ V do

10: Ek
j =

pj
√

∑

r∈R

qr
j

Cr +
qm
j
−sk

j
+1

Cm

11: j̃ = argmax
j

{Ek
j }

12: if (Cm − (qm
j̃
− sk

j̃
) < 0)or (Cu − qu

j̃
< 0)or (Cs − qs

j̃
< 0) then

13: flag← 0
14: V = V \ {Vj̃}
15: if (flag) then

16: VH = VH ∪ {Vj̃}
17: V = V \ {Vj̃}
18: [Cm

, Cu
, Cs

℄ = [Cm
, Cu

, Cs
℄ - [(qm

j̃
- sk

j̃
), qu

j̃
, qs

j̃
℄

19: for i = 1, . . . , N do

20: if (ativePage(πi
j̃
)) then

21: alloatePage(πi
)

22: P = P + pj

23: k = k + 1

24: Ω← VH

25: exit

whih indiates a valid VM alloation upon identifying the VM that is alloated later in the

algorithm. The major di�erene between the �rst phase that onsiders potential sharing and

the seond phase is that in the seond phase the sharing is determined relative to the VMs

that are already sheduled to be alloated on the server. The algorithm identi�es the pages

whih an be shared relative to memory pages already alloated, for every page requested

in eah remaining Vj ∈ V. For those memory pages required by Vj ∈ V whih are already

alloated, the shared page ounter skj is updated (Lines 5 through 8). Next, the e�ieny

metri is alulated for all Vj ∈ V (Lines 9 and 10) and the VM with the highest e�ieny

value is identi�ed by the index j̃ (Line 11). Prior to alloating Vj̃ , a hek must determine

if the alloation will fully deplete any of the multiple types of resoures provided by the PM
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(Line 12). If any of those resoures are fully depleted, the flag variable is set to 0 (Line 13)

and Vj̃ is removed from V (Line 14) sine it annot be alloated. If flag is still 1, then Vj̃ is

stored in VH
and removed from V (Lines 16 and 17). The apaities of eah of the multiple

resoures of the PM are then redued aording to the resoures requested by Vj̃ (Line 18),

that is, the PM memory apaity Cm
is redued by qm

j̃
and sk

j̃
pages are added bak to the

apaity beause those pages are already alloated and do not ount against Cm
sine they

will be shared as a result of a previous VM alloation. Any new pages requested by Vj̃, if they

are not already alloated, are then alloated by alling alloatePage() (Lines 19 through 21).

Next, the revenue pj from alloation of Vj ∈ VH
is aumulated into P (Line 22). Lastly,

the iteration ount k is inremented (Line 23) and the proess ontinues until either one of

the PM resoures are fully depleted, or until V = ∅, and then the VMs in the set VH
are

instantiated on the PM server Ω (Line 24).

We now present an example to show how G-MSAVMM works. We onsider a single

server with resoure apaities: vCPU, Cu = 6 vCPUs; storage, Cs = 8 GB; and memory,

Cm = 16 pages. We onsider four VM requests haraterized by the parameters given in

Table 2.2 (derived revenue, pj; vCPU request, quj ; storage request, q
s
j ; and memory request,

qmj , translated into number of pages). Figures 3.2, 3.3, and 3.4 show the details of eah

iteration k of G-MSAVMM. Within the Figures, page πi
j, (i = 1, . . . , 16 and j = 1, . . . , 4), is

identi�ed by a gray blok, if it is requested by Vj , or by an empty blok, if the page is not

requested by Vj. The number of gray bloks per VM orresponds to the total number of

pages translated from the requested amount of memory, qmj .

The �rst phase of G-MSAVMM is illustrated Figure 3.2. The array A in Figure 3.2,

stores these values per page and only the values where Ai > 1 indiate potential for page

sharing. The maximum value in A orresponds to the page that is shared the most among all

the pages in V. Based on the parameters of our example, π5
, where the max ount is identi�ed

in bold in array A (Figure 3.2), would be shared the most and all VMs whih request π5
would

be onsidered andidates for instantiation in the �rst phase of G-MSAVMM. The e�ieny
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pj quj qsj qmj s0j E0
j

V1 0.95 1 2 4 4 1.3742

V2 1.05 1 2 5 5 1.5169

V3 1.35 2 2 7 6 1.6040

V4 1.80 4 2 14 9 1.5898

V2

k = 0

P CuCs

VH = {∅},

1.05 1 2

0.00 6 8

V4 1.80 4 2

V3 1.35 2 2

V1 0.95 1 2

pj quj qsj

πi

A : 3 2 2 4 1 2 2 33 2 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.2: G-MSAVMM E�ieny Metri Calulation: Iteration 0

pj quj qsj qmj s1j E1
j

V1 0.95 1 2 4 3 1.0585

V2 1.05 1 2 5 2 1.0357

V3 * * * * * *

V4 1.80 4 2 14 5 1.1514

V2

k = 1

P CuCs

VH = {V3}

1.05 1 2

1.35 4 6

V4 1.80 4 2

V3 1.35 2 2

V1 0.95 1 2

pj quj qsj

πi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.3: G-MSAVMM E�ieny Metri Calulation: Iteration 1

metri value is then alulated for those VMs sharing the most requested page and, based on

the values given in Figure 3.2, the highest e�ieny metri, 1.6040, is assoiated with V3. All

pages requested by V3 are ativated in Π and added to subset VH
. The ativated pages under

provider management in Π are marked by gray boxes whih are onneted with vertial lines

to the pages required by V3. Lastly, the server resoure apaities are redued as follows:

vCPUs, Cu = 4, storage, Cs = 6, and memory, Cm = 9, aording to V3 resoure requests.

The servie provider then updates the derived revenue from instantiating V3, amounting to

1.35.
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pj quj qsj qmj s2j E2
j

V1 0.95 1 2 4 4 -

V2 1.05 1 2 5 5 -

V3 * * * * * *

V4 * * * * * *

V2

k = 2

P CuCs

VH = {V3, V4}

1.05 1 2

3.15 0 4

V4 1.80 4 2

V3 1.35 2 2

V1 0.95 1 2

pj quj qsj

πi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.4: G-MSAVMM E�ieny Metri Calulation: Iteration 2

The next iteration of G-MSAVMM, orresponding to the �rst iteration of the greedy

phase (k = 1), is illustrated in Figure 3.3. In this iteration, G-MSAVMM �nds idential,

requested pages between VMs and the ative pages within Π. The e�ieny metri value

is alulated for all remaining VMs regardless of their potential for page sharing, where the

highest e�ieny metri, 1.1514, is assoiated with V4. Following the instantiation of V4,

the algorithm redues the server resoure apaities aording to V4's resoure request as

follows: vCPUs, Cu = 0, and storage, Cs = 4. For the server memory resoure, V4 onsists

of 14 pages, where 5 pages are shared with ative pages in Π (i.e., π3
, π5

, π7
, π9

, and π10
);

thereby, the server memory resoure only needs to aount for π1
, π4

, π6
, π8

, and π11
to

π14
, in Π, whih are required to instantiate V4. Lastly, the revenue is updated to 3.15. At

this iteration, G-MSAVMM stops beause the memory resoure has been exhausted and no

further VM instantiation is possible (Figure 3.4). The total revenue obtained by G-MSAVMM

for this example is $3.15, whih is less than $4.05, the optimal revenue obtained by solving

the BMP-MSAVMM.

A slightly largerMSAVMM instane onsisting of 20 synthetially reated VMs, where

eah VM may request up to 256 pages and onsiders multiple resoure requests, shows a sig-

ni�ant di�erene in performane between BMP-MSAVMM and G-MSAVMM. By generating,

uniformly at random, VMs whih are pried between $.30 for a single vCPU, 4 GBs of
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RAM, and 64 GBs of storage to $2.45 for a VM whih requests 16 vCPUs, 64 GBs of RAM,

and 128 GBs of storage, our results show BMP-MSAVMM aquires 63% more revenue than

G-MSAVMM. Spei�ally BMP-MSAVMM generated $19.88 whereas G-MSAVMM generated

$12.18 when implemented on a single server onsisting of 60 vCPUs, 1024 GBs of RAM, and

approximately 1 TB of storage. In the next setion, we determine the approximation ratio

for G-MSAVMM whih will haraterize how far the solution obtained by G-MSAVMM an

be from the optimal solution.

3.5 G-MSAVMM Properties

In this setion, we investigate the approximability properties of our proposed algo-

rithm. We determine the approximation ratio of G-MSAVMM by onsidering a worst possible

server setup, ΩW
, for the MSAVMM problem. We onsider ΩW

onsisting of three resoure

types: memory, vCPU, and storage. We assume that ΩW
has a small apaity for the mem-

ory resoure, a large apaity for the vCPU resoure, and a large apaity for the storage

resoure.

Let VW
denote a worst-ase instane of the MSAVMM problem, where VM Vĵ ∈ VW

does not share any memory pages with the other VMs in VW
. Then, let at least one VM

Vĵc ∈ VW
be omprised of pages whih are a omplement set of pages to VM Vĵ. In addition,

let the remaining VMs in VW
be omprised of either a subset of pages in VM Vĵc or be

equivalent to VM Vĵc . In either ase, the remaining VMs would be alloated onto ΩW
if Vĵc

were to be alloated �rst sine they all share the same memory pages and would not redue

the memory apaity of ΩW
.

We investigate this instane on server ΩW
with a limited memory apaity suh that

either VM Vĵ or VM Vĵc an be alloated, but not both, while not depleting the vCPU and

storage apaities. If VM Vĵc is alloated, then all remaining VMs in VW \ {Vĵ}, will be

alloated as well due to page sharing and the freedom in both vCPU or storage apaities.

Else, VM Vĵ is alloated and utilizes the memory apaity enough to not allow any other

VM from VW
to be alloated. We assume that ΩW

has a large number of vCPUs available
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and a large storage apaity that allows a set of M VMs to be alloated. If either the vCPU

or storage apaities were small, then only a subset of VMs may be alloated due to vCPU

or storage onstraints in addition to the memory apaity.

Our design of VW
and ΩW

will exhibit the greatest di�erenes between the optimal

revenue obtained by an optimal algorithm (e.g., exhaustive searh) and the revenue generated

from our greedy G-MSAVMM algorithm. If the memory apaity was larger than our proposed

setup, then the revenue generated from G-MSAVMM ould be loser to the optimal revenue

generated by the optimal algorithm. Therefore, a server that has low memory apaity, high

vCPU apaity, high storage apaity, and where page sharing ours, represents the worst

ase senario. In the following, we determine the approximation ratio for G-MSAVMM based

on the worst ase instane VW
and server ΩW

.

Theorem 3.5.1. The approximation ratio of G-MSAVMM isM
√

Cmax(|R|+ 1), where Cmax =

max{Cm, Cu, Cs}, R is the number of resoures and M is the number of VMs.

Proof. Let the revenue obtained from an optimal solution be denoted by P ∗
, and the optimal

set of VMs whih generates P ∗
from VW

be denoted by VW
OPT , VW

OPT ⊂ VW
, where P ∗ =

∑

j:Vj∈VW
OPT

pj under server resoure ΩW
.

Let the revenue obtained by G-MSAVMM be denoted by P , and the set of VMs whih

generate P from VW
be denoted by VW

GRD, VW
GRD ⊂ VW

, where P =
∑

j:Vj∈VW
GRD

pj under server

resoure ΩW
.

Assume at k = 0, VM Vĵ is alloated by G-MSAVMM onto ΩW
; admitting the re-

lationship E0
j < E0

ĵ
, for any j 6= ĵ. Sine VM Vĵ does not share pages with VMs in VW

,

s0
ĵ
= 0, and by Equation 3.6,

pj
√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

<
pĵ

√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

(3.7)
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√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

pj < pĵ (3.8)

whih establishes the lower bound for pĵ in order for Vĵ to be seleted aording to our

e�ieny metri at k = 0. This implies that for any pĵ greater than the established lower

bound, VM Vĵ will be alloated �rst onto ΩW
from VW

by G-MSAVMM. Considering the

memory utilization of VM Vĵ and memory apaity of ΩW
, no other VM alloations an be

performed and k stops at 0. Sine P =
∑

j:Vj∈VW
GRD

pj , therefore P = pĵ.

Suppose through an exhaustive searh, the optimal revenue value P ∗
is alulated

whereby VM Vĵc is alloated �rst onto ΩW
. Sine every remaining VM in VW

is omprised

of a subset of pages in VM Vĵc , not inluding VM Vĵ , then the exhaustive searh alloates

all remaining VMs onto ΩW
without depleting the vCPU and storage apaities. Therefore,

the optimal value P ∗ =
∑

j:Vj∈VW
OPT

pj implies P ∗ =
∑

j:Vj∈VW \{V
ĵ
}

pj.

In order to determine the approximation ratio for this instane of MSAVMM, we show

that P ∗ ≤ Pα, where α is the multipliative fator that will give the approximation ratio of

G-MSAVMM. Therefore,

P ∗

P
=

∑

j:Vj∈VW
OPT

pj
∑

j:Vj∈VW
GRD

pj
(3.9)

=

∑

j:Vj∈VW \{V
ĵ
} pj

pĵ
(3.10)
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By substituting pj from Eq. 3.8, we obtain

P ∗

P
<

1

pĵ

∑

j:Vj∈VW \{V
ĵ
}

√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

pĵ (3.11)

=
∑

j:Vj∈VW \{V
ĵ
}

√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

(3.12)

=

∑

j:Vj∈VW \{V
ĵ
}

√

∑

r∈R

qr
j

Cr +
qm
j
−sk

j
+1

Cm

√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

(3.13)

Sine

√

√

√

√

∑

r∈R

qr
ĵ

Cr
+

qm
ĵ
− sk

ĵ
+ 1

Cm
≥

√

1

Cmax

(3.14)

where Cmax = max{Cm, Cu, Cs}, we obtain

P ∗

P
≤

√

Cmax

∑

j:Vj∈VW \{V
ĵ
}

√

√

√

√

∑

r∈R

qrj

Cr
+

qmj − skj + 1

Cm
(3.15)

Beause

∑

r∈R

qrj

Cr
≤

∑

r∈R

1 ≤ |R| (3.16)

and

qmj − skj + 1

Cm
≤ 1 (3.17)
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we have

P ∗

P
≤

√

Cmax

∑

j:Vj∈VW \{V
ĵ
}

(
√

|R|+ 1) (3.18)

Thus,

P ∗

P
≤ (M − 1)

√

Cmax

√

|R|+ 1 ≤M
√

Cmax(|R|+ 1) (3.19)

Therefore,

P ∗

P
is bounded by α = M

√

Cmax(|R|+ 1), whih results in an approximation

ratio of M
√

Cmax(|R|+ 1) for the G-MSAVMM algorithm.

We now investigate the time omplexity of G-MSAVMM. The running time is dom-

inated by the seond phase, the greedy phase. The while-loop (Line 29) is exeuted a

maximum of M − 1 times sine one VM has already been inserted into VH
and there exists

instanes where VH ⊆ V. Within the while-loop, the running time is dominated by the searh

and alulation of shared pages between the VMs in V and the ative pages on Ω (Lines 31

- 34). The searh and alulation are exeuted a maximum of M − 1 times, orresponding

to the possible number of VMs at k = 1, by the number of ative pages to searh on Ω, thus

the running time is O(N(M − 1)). Then, the running time for the entire greedy phase is

O(N(M − 1)2). Thus, G-MSAVMM has an asymptoti running time of O(NM2) whih is

linear in the total number of pages and quadrati in the number of VM requests.

3.6 Experimental Results

In this setion, we desribe the experimental setup and perform extensive experiments

investigating the performane of G-MSAVMM against other VM maximization algorithms.

3.6.1 Experimental Setup

The software used in the experiments and trae proessing is implemented in C++

on 2.93 GHz Intel 64-bit Intel hexa-ore dual-proessor systems within the Wayne State

University High Performane grid [102℄.
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Utilizing Google Cluster Usage Traes

For our experiments, we used the luster usage traes from workloads running on

Google ompute ells [83℄. A ompute ell is a set of mahines within a single luster,

supported by a ommon luster-management system. We used the publily available Clus-

terData2011_1 data set whih reports the ativity for a 12k-mahine ell during May 2011

from Google Cloud Storage [37℄. While the data set is publily available, extensive e�ort has

been exerted in order to obfusate information by normalizing, hashing and resaling the

data to not expliitly reveal atual information suh as users, appliations, server spei�a-

tions, et. [84℄. As a result, researh fousing on haraterizing the many faets of the data

set suh as appliations [26℄, user behavior [1℄ and workloads [67℄ [81℄, have already been

thoroughly presented in the literature. The ClusterData2011_1 data set onsists of tables

grouped aording to mahines, jobs and tasks, whih are further grouped into ategories suh

as attributes, onstraints, events, and usage. We fous on a single table, task_events, whih

provides normalized data of relevant requests for CPU, memory, and loal disk resoures. In

order to generate a data set from task_events whih is meaningful to our investigation, we

employed a �ltering strategy as follows:

• Eliminate traes whih are missing information, i.e., aquire trae if missing info = 0.

• Eliminate traes where task events are evited, failed, killed, or lost, and eliminate any

traes with update events, i.e., aquire trae if event type = 1.

• Eliminate traes where tasks have a low sheduling lass. The sheduling lass �eld

haraterizes how sensitive a task is to lateny. Sine our investigation fouses on

revenue maximization, we only onern ourselves with those tasks whih are lassi�ed

as high; re�eting a servie to revenue generating user requests [83℄. Due to obfusation,

we do not know exatly that every trae with a high sheduling task is a revenue

generating user request; therefore, for our investigation we assume that traes at the

highest level of sheduling lass are revenue generating user requests, i.e., aquire trae

if sheduling lass = 3.



www.manaraa.com

59

n1-standard-{size} : ( n1s{size} ) n1-highmem-{size} : ( n1m{size} ) n1-highpu-{size} : ( n1{size} )

{size} {1} {2} {4} {8} {16} {32} {2} {4} {8} {16} {32} {2} {4} {8} {16} {32}

Memory (GB) 3.75 7.50 15 30 60 120 13 26 52 104 208 1.80 3.60 7.20 14.40 28.80

vCPU 1 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Prie ($/hour) 0.050 0.100 0.200 0.400 0.800 1.600 0.126 0.252 0.504 1.008 2.016 0.760 0.152 0.304 0.608 1.216

Table 3.5: G-MSAVMM Experiment: VM Instane Types.

• Eliminate traes where tasks have a low priority and that are monitoring. We only

onsider traes orresponding to tasks lassi�ed as high priority, whih will be last to

be evited in the ase of over-provisioning the mahine resoure, i.e., aquire trae if

priority ≥ 8 and priority 6= 10.

• Eliminate any traes that allow for tasks within a job to be proessed on di�erent

mahines. Sine our investigation only onsiders a single mahine resoure, we only

onsider traes where the job onsists of tasks that must be alloated to a single

mahine, i.e., aquire trae if di�erent mahines restrition = 0.

While the trae usage events in ClusterData-2011-1 supply a onsiderable amount of infor-

mation, our fous on revenue maximization requires eah trae in our experiments to be

augmented with a revenue value whih a servie provider would reeive following the instan-

tiation of a VM request. Sine the trae usage data does not reveal the revenue aquired

from hosting revenue generating user requests, we �t eah trae request in our experiments

to a pried Google Compute Engine VM Instane [38℄, relative to its normalized memory

and pu request values and server apaity values. The harateristis of Google Compute

Engine VM instanes are given in Table 3.5. Due to both data normalization and obfusation

tehniques used in ClusterData-2011-1, identifying the exat server resoures and extrating

its tehnial spei�ation is not possible solely on the data provided. Therefore, our experi-

ments are onduted by simulating the resoure apaities of a Lenovo Flex System x880 X6

Compute Node (Intel Xeon E7-8890 v2) PM server with the following resoure spei�ations:

120 ores (8 hips × 15 ores per hip); 2 TB memory (128 × 16 GB DDR3) and 9.6 TB

disk spae (24 × 400 GB SSD). The Lenovo Flex System x880 X6 Compute Node is the

highest rated server aording to the SPECvirt_s2013 benhmark whih evaluates data-
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enter server performane and virtualized server onsolidation onduted by the Standard

Performane Evaluation Corporation

© (SPEC), released in the 2nd quarter of 2015 [89℄.

Eah VM instane used in our experiments reports its harateristis; memory, vCPU,

storage, and prie. In order to �t eah VM request, t, from the trae usage set to a Google

VM Instane, we �rst alulate the produt of the normalized memory and CPU resoure

request values in the �ltered data and the server's memory and vCPUs apaities, Cm
and

Cu
respetively. The resulting produts represent a spei� amount of memory (in GB),

denoted by tm, and a number of vCPUs, denoted by tu, relative to the server spei�ations.

For every Google Compute Engine VM Instane gy, y ∈ {1 . . . 16}, we denote its memory

requirement by gmy and its vCPU requirement by guy . We alulate ỹ, the index of the Google

Compute Engine VM Instane that minimizes the 2-norm relative error between t's requested

amount of memory and vCPUs and gy's requirements, as follows,

ỹ = argmin

y

√

( |tm − gmy |
Cm

)2

+

( |tu − guy |
Cu

)2

(3.20)

Then, we map the trae request t to the Google Compute Engine VM Instane gỹ,

that is, to the Google VM instane that �ts the requested resoures the best. Lastly, the

storage usage values are not fully aptured within ClusterData-2011-1 traes due to Google

treating storage as a separate servie from Google Compute Engine [83℄. Therefore, we do

not use the VM storage request information within our experiments.

Modeling Page Sharing

Leveraging page sharing to maximize revenue requires the identi�ation of appli-

ations and the operating system used by the instantiated VMs, whih are not revealed

within the ClusterData-2011-1 trae set. Although, eah task event operates within its own

ontainer [83℄, we treat eah task event as a VM instane under various operating system

software.

For our experiments, we onsider the page ontent similarity perentages among OSs

reported by Bazarbayev et al. [7℄. These perentages are given in Figure 3.5. We on-
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Figure 3.5: Page Sharing Perentages Table: OS.

sider �xed page sharing perentages for every possible OS ombination onsidered in our

experiments. Eah entry in the sharing table represents a page sharing perentage value

de�ned as the perentage of the OS memory of the already hosted VM that an be shared

by the OS of the newly arrived VM. Eah VM in our experiment will selet uniformly at

random one of three versions of three OSs: CentOS Server x86_64 (C6.0-6.2); Windows

Server 64bit (W64b), Windows Server R2 (WR2), Windows Server R2 SQL (WR2S); and

Red Hat Enterprise Linux x86_64 (R6.0-6.2).

To show how page sharing works in our experiment, if a server has a VM whih has

seleted CentOS server 6.0 (C6.0) as its OS and another VM whih is attempting to be

olloated on the same server has seleted CentOS server 6.2 (C6.2), then the VM whih

seleted C6.0 will share 28% of C6.2's OS pages. Sine C6.0's OS image size is .77 GB and

the amount of memory that is shared between C6.0 and C6.2 is 220 MB, then the sharing

perentage is alulated as

220MB

.77GB
= 28%. The amount of memory sharing and image sizes

are those determined by Bazarbayev et. al [7℄. On the other hand, if a server has a VM whih

has seleted CentOS server 6.2 (C6.2) as its OS and another VM whih is attempting to be

olloated on the same server has seleted CentOS server 6.0 (C6.0), then the VM whih
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seleted C6.2 will share 11% of C6.0's OS pages. Sine C6.2's OS image size is 1.96 GB

and the amount of memory that is shared between C6.0 and C6.2 is still 220 MB, then the

sharing perentage is alulated as

220MB

1.96GB
= 11%. As an be seen from the above example,

C6.0 and C6.2 share the same amount of memory in both ases, but the perentages are

di�erent beause they are alulated relative to di�erent bases, C6.2 in the �rst ase and

C6.0 in the seond ase. This asymmetry in terms of sharing perentages also ours for

other OS ombinations given in Figure 3.5. Furthermore, we onsider that CentOS and Red

Hat Enterprise Linux (RHEL) distributions of the same version share approximately 95% of

their ontent. CentOS is an open-soure version of RHEL with the exeption of proprietary

updates and trademarks (see CentOS 6.2 Release Notes). We slightly sale down the page

sharing perentages between two VMs with di�erent versions of RHEL and CentOS aording

to the inter-OS version sharing perentages in Figure 3.5. Lastly, ases exist in whih two

operating systems will share very little memory, as was found by Sindelar et. al [86℄ for

Windows and Linux OS distributions. Sine the sharing is marginal in these ases, we assign

a sharing perentage value of 0 when this ours, i.e., a VM operating under Windows Server

R2 (WR2) and a VM operating Red Hat Enterprise Linux 6.0 (R6.0) whih are olloated

on the same server will not share any OS pages between them.

Comparing G-MSAVMM

We ompare our algorithm with other algorithms for VM maximization. Sine suh

algorithms are not available in the literature, we deided to design several types of greedy

algorithms that use various greedy ordering methods based on single parameters suh as

revenue, number of shared pages, vCPUs, and amount of memory, and use them in our

experiments. Thus, we ompare G-MSAVMM with four algorithms that are variants of G-

MSAVMM: P-DO whih alloates the VM requests in dereasing order of their revenue (this

orresponds to G-MSAVMM with Ek
j = pj); SP-DO whih alloates the VM requests in

dereasing order of the number of shared pages (this orresponds to G-MSAVMM where

Ek
j is alulated with pj = 1, and the �rst term under the square root equal to 0); C-IO
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Table 3.6: Algorithms Used in Experiments.

Algorithm Greedy ordering

G-MSAVMM Dereasing order of Ek
j .

P-DO Dereasing order of revenue.

SP-DO Dereasing order of the number of shared pages.

C-DO Dereasing order of the number of requested vCPUs.

C-IO Inreasing order of the number of requested vCPUs.

M-DO Dereasing order of the amount of requested memory.

M-IO Inreasing order of the amount of requested memory.

DR-DO Dereasing order of the dominant resoure.

DR-IO Inreasing order of the dominant resoure.

whih alloates the VM requests in inreasing order of the number of requested vCPUs (this

orresponds to G-MSAVMM where Ek
j is alulated with pj = 1, and the last term under the

square root equal to 0); and, M-IO whih alloates the VM requests in inreasing order of

the amount of requested memory (this orresponds to G-MSAVMM where Ek
j is omputed

with pj = 1, the �rst term under the square root equal to 0, and skj = 0). We also ompare

G-MSAVMM with four other greedy algorithms that are not variants of G-MSAVMM: C-DO

whih alloates the VM requests in dereasing order of the number of requested vCPUs;

M-DO whih alloates the VM requests in dereasing order of the amount of requested

memory; DR-DO, whih alloates VMs in dereasing order of the dominant resoure request;

and, DR-IO, whih alloates VMs in inreasing order of the dominant resoure request.

The last two algorithms are dynami in the sense that their greedy order is dependent

on the largest (dominant), normalized resoure value given dynami provisioning of the

PM server resoure. The algorithms used in our experiments are presented in Table 3.6.

Eah greedy algorithm used for omparison is designed to bene�t from page sharing at

the hypervisor level (i.e., one the alloation is deided by the algorithms, the hypervisor

identi�es the pages that are shared among the alloated VMs), but they do not onsider the

sharing of pages in determining the alloation. There is one exeption, SP-DO algorithm,

whih uses the number of shared pages to establish the greedy ordering, and thus, the

alloation.
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3.6.2 Analysis of Results

We now ompare the performane of G-MSAVMM against the other greedy algorithms

onsidered in our experiments. Our experiments onsist of using the �ltered Google luster-

usage trae events aording to our strategy desribed in Setion 3.6.1. We use a portion of

the transformed trae events whih onsists of 15,000 events. The distribution of VMs whih

are used in our experiments is illustrated in Figure 3.6.

We partition our trae into windows, i.e., uniform interval partitions of the entire

trae. Eah algorithm in our experiments will operate and alloate VM requests to a server

within a window aording to its design and available server resoures. Our experiments

onsider three types of windows: W30, W50 and W100 where a server will attempt to

alloate a portion of the VMs. For example, in the ase of W50, the trae is partitioned into

50 VM requests per window and eah window is assigned a single server (300 servers total

in W50). For W30 and W100, the trae is divided into sets of 30 and 100 VM requests,

respetively. When at least one of the server resoures has been exhausted in the urrent

window, the server is onsidered losed and any VM whih remains unalloated in the urrent

window is rejeted. Then, the next window beomes available and a new server omes online

ready for eah algorithm to undergo its alloation proess until all 15,000 events have been

onsidered.

In Figure 3.7, we plot the inrease of memory utilization when omparing G-MSAVMM

against sharing-oblivious versions of the algorithms listed in Table 3.6. For eah window

within W30, W50, and W100, we implemented sharing-oblivious versions of these algorithms,

meaning the hypervisor mehanism whih performed the searh for shared pages was turned

o� and dupliate pages ould be present among olloated VMs' memory requests. We,

then, reorded the amount of memory eah sharing-oblivious algorithm utilized following

the alloation of VMs within eah window for W30, W50, and W100 to the available server

resoure. Lastly, we implemented G-MSAVMM for eah window within W30, W50, and

W100, then reorded the amount of memory that was utilized in the VM alloation. The
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Figure 3.6: Distribution of Google Type VMs in Experiment.

inrease in memory utilization is the di�erene between G-MSAVMM's memory utilization

and the maximummemory utilization reorded among the sharing-oblivious algorithms. The

algorithms whih generated the maximum memory utilization �utuated between sharing-

oblivious versions of SP-DO, M-IO, and DR-IO for eah window within W30, W50, and

W100. Memory tends to be the extraneous resoure whih remains when the vCPU apaity

has been exhausted on the server whih hosts the VM requests. By taking page sharing

into onsideration, an inrease of memory utilization an be ahieved by a sharing-aware

algorithm suh as G-MSAVMM so that less memory lies dormant when vCPU resoures

have been exhausted. Based on our experiments, we have found that on average using G-

MSAVMM inreases the overall memory utilization by approximately 26% aross W30, W50,

and W100. In Figure 3.7, we show that by using G-MSAVMM, the inrease in memory

utilization is between 7% and 40% over all 500 windows in W30, between 10% and 41% over

all 300 windows in W50, and between 11% to 42% over all 150 windows in W100.

In Figure 3.8, we show the average aggregated revenue ratios obtained by the algo-

rithms using our trae. The revenue ratio is de�ned as an algorithm's obtained revenue

per window, over the revenue generated by the best performing algorithm within the same
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Figure 3.7: Sharing vs. non-Sharing Memory Utilization.

window. The revenue ratios indiate eah algorithm's performane proximity to the maxi-

mum revenue attained for that window within the window sequene. These revenue ratios

will never be larger than 1 for any of the algorithms during any window within the window

sequene. By aggregating these ratios and then dividing by the number of windows in the

sequene (e.g., for W50, there will be 300 windows within the window sequene), we alulate

the average aggregated revenue ratio, whih provides insight into whih algorithm exhibits

the best performane in terms of revenue.

G-MSAVMM obtains the highest average aggregated revenue ratio for all three window

intervals (Figure 3.8). Moreover, as the window size inreases the eight ompeting algorithms

exhibit a derease in revenue whih is in ontrast to the inrease in revenue exhibited by

G-MSAVMM. Our experiments show that as the windows grow larger and ontain greater

VM resoure type heterogeneity, G-MSAVMM makes better greedy alloation deisions for
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Figure 3.8: Average Aggregate Revenue Ratios.

revenue generation than the ompeting algorithms. The next best performing algorithm is

C-IO whih tends to have similar behavior to G-MSAVMM due to the fat that vCPU is a

sare resoure. G-SAVMM tends to outperform C-IO in terms of average aggregated revenue

ratios by approximately 3% in W30, 5% in W50, and 7% in W100.

We also investigate the performane of the algorithms in terms of average generated

revenue per server (Figure 3.9). The results are onsistent with those in Figure 3.8, in that

G-MSAVMM generates the highest average revenue followed by C-IO for all window types.

G-SAVMM outperforms C-IO when omparing the average revenue generated per server by

approximately 3% in W30 (or by $0.27), 5% in W50 (or by $0.43), and 8% in W100 (or by

$0.73). While these di�erenes maybe small; operating at sale with millions of VMs and

tens of thousands of servers an lead to sizable losses of revenue if a less e�ient algorithm

is used. Our results reveal that G-MSAVMM is the best performing algorithm, obtaining

greater revenue ratios and higher average revenue than the other eight algorithms.

When alloating VMs to server resoures, the sarest resoure is the vCPU resoure.

Therefore, algorithms whih onserve the vCPU resoure and maximize the use of the less

sare memory resoure while generating higher revenues are desirable. In Figure 3.10,
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Figure 3.9: Average Revenue Per Server.

we ompare the eight resoure-entri algorithms against G-MSAVMM in terms of resoure

utilization. On the left side of Figure 3.10, we ompare three memory-entri alloation

algorithms, SP-DO, M-DO and M-IO, against G-MSAVMM, and on the right, we ompare

three vCPU-entri alloation algorithms, P-DO, C-DO and C-IO, against G-MSAVMM. P-

DO is a vCPU-entri alloation algorithm sine the value of a VM is more related to

the sarity of the vCPU resoure. Fousing on memory, we plot the average utilization

perentage for eah memory-entri algorithm. SP-DO slightly outperforms G-MSAVMM by

.5% in W30, .8% in W50, and 1% in W100. While SP-DO utilizes slightly more memory

than G-MSAVMM, hoosing SP-DO as the alloation algorithmwould lead to signi�antly less

revenue generated on average per server. Fousing on vCPUs, we plot the average utilization

perentage for eah vCPU-entri algorithm. C-IO slightly outperforms G-MSAVMM by .5%

in W30 (onserving .64 of a vCPU ore), .7% in W50 (onserving .84 of a vCPU ore), and

1% in W100 (onserving 1.16 vCPU ores). While C-IO utilizes slightly less vCPUs than G-

MSAVMM, hoosing C-IO as the alloation algorithm would lead to less revenue generated on

average, $.27 instead of $.73 per server. Although G-MSAVMM is a multi-resoure alloation

algorithm, its memory utilization is marginally lose to the best memory-entri algorithm,
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SP-DO, and its vCPU utilization is marginally lose to the best vCPU-entri algorithm,

C-IO; subsequently generating the highest revenue among them.

Throughout our experiments, ertain algorithms obtain greater revenue relative to

G-MSAVMM for spei� windows within W30, W50 and W100. The performane of the

algorithms depends on the number and type of VMs requested within eah window. For

instane, when omparing G-MSAVMM to C-IO on a window with fairly homogeneous VM

requests, their alloation behavior is nearly idential. In ontrast, when the heterogene-

ity of VM types in a spei� window inreases, they behave di�erently with G-MSAVMM

outperforming C-IO in terms of obtained revenue.

Lastly within our experiment, there are windows with spei� VM type requests

ombinations whih sti�e G-MSAVMM performane against other algorithms. By analyzing

the behaviors of these algorithms on spei� sets of VM requests, we an identify under whih

set of VM requests should a spei� alloation algorithm be used. In Figures 3.11, 3.12

and 3.13, we show the on�gurations of VM requests for spei� W30, W50 and W100

windows. This illustrates the di�erenes in alloation behavior between G-MSAVMM and its

variants, P-DO, SP-DO, C-IO, and M-IO.
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Figure 3.11: W30: G-MSAVMM behavior for di�erent VM request on�gurations.

In eah of the �gures, we denote by µ+
on the horizontal axis, the VM requests

ombinations in whih the alloation results in the largest revenue for G-MSAVMM. Likewise,

we denote by µ−
, the VM requests ombinations in whih the alloation results in the

largest revenue for P-DO, SP-DO, C-IO and M-IO. Lastly, we denote by µ0
the VM requests

ombinations in whih G-MSAVMM's revenue is the same as that of P-DO, SP-DO, C-IO, and

M-IO. While some outlier ombinations exist (e.g., P-DO at µ0
in W50), our results show that

G-MSAVMM tends to outperform all other algorithms when VM requests are heterogeneous

both with respet to the VM harateristis and the number of VMs of eah type requested

within the windows.

3.7 Summary

We designed a sharing-aware greedy approximation algorithm (G-MSAVMM) for solv-

ing the multi-resoure sharing-aware VMmaximization problem. We showed that G-MSAVMM

is a M
√

Cmax(|R|+ 1)-approximation algorithm, where M is the number of VM instanes



www.manaraa.com

71

 0

 10

 20

 30

 40

 50

 60

 70

µ+ µ0 µ- µ+ µ0 µ- µ+ µ0 µ- µ+ µ0 µ-

N
um

be
r 

of
 V

M
s

 

n1s1
n1s8

n1s16
n1m2
n1m4
n1m8

n1m16
n1m32

M-IOC-IOSP-DOP-DO

Figure 3.12: W50: G-MSAVMM behavior for di�erent VM request on�gurations.

that are to be alloated, Cmax is the maximum apaity among all types of resoures, and

R is the number of resoure types exept the memory resoure. The experimental results

showed that G-MSAVMM outperforms eight other VM alloation algorithms in terms of gen-

erated revenue and e�ient utilization of resoures. In future work, we plan on extending

G-MSAVMM to manage the VM alloation proess in online environments. Inorporating

energy onsumption awareness and network virtualization into the multi-resoure type VM

alloation problem would be an interesting extension.
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CHAPTER 4: MULTI-RESOURCE VM PACKING

4.1 Introdution

Cloud adoption by government, industrial, and aademi institutions has reated

opportunities for providers to o�er servies through �exible infrastrutures based on vir-

tualization tehnologies. Industry foreasts predit that by 2019 approximately 80% of all

workloads will be managed through data enter virtualization servies [18℄. A hallenge

faing loud servie providers is the development of e�ient resoure alloation mehanisms

allowing them to redue the osts and inrease their pro�ts.

Current virtualization tehnologies inorporate mehanisms that perform memory

relamation, i.e., mehanisms that regulate/onserve memory resoures when multiple VMs

are instantiated through a hypervisor layer. The dedupliation of similar memory pages

between two or more VMs instantiated through the same hypervisor layer, i.e., page-sharing,

is an example of suh mehanisms whih are ommon to both open soure and proprietary

platforms. Page-sharing and similar mehanisms drive the development of more e�ient

algorithms suitable for resoure management. A variant of the VM resoure alloation

problem motivated by these developments is the VM Paking problem [86℄.

The VM Paking problem onsiders instantiating multiple VMs in an �o�ine� setting

whih utilizes hypervisors as an arhitetural layer on top of physial servers, allowing for

page-sharing; resulting in redued utilization of the memory resoure. Traditionally, VM

alloation problems with multiple resoure requirements have been modeled as vetor bin

paking problems, where eah resoure is represented as a vetor omponent. The goal is to

minimize the number of ative servers used in order to instantiate a set of VMs aording to

server alloation poliies and available resoure apaities. The online VM Paking problem

onsiders how to assign VMs, whose resoure requests are unknown until they arrive to the

loud servie provider, suh that the number of ative servers is minimized. Classial sharing-

oblivious vetor bin paking algorithms in an online setting where VMs request multiple

types of resoures, will result in less e�ient alloations sine they do not leverage memory
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sharing opportunities. Therefore, in this hapter, we design and investigate algorithms for

solving the sharing-aware online VM Paking problem whih results in a minimum number

of ative servers used to instantiate arriving VMs, where page-sharing ours relative to

VMs already instantiated on the servers. Sine hypervisors used by loud providers employ

memory relamation, our sharing-aware online algorithms leverage this utility; signi�antly

reduing the number of servers needed to satisfy the user requests and impliitly reduing

energy and servie osts.

4.1.1 Our Contribution

We propose sharing-aware online algorithms for solving the VM Paking problem with

multiple resoure requirements and heterogeneous server apaities in an online setting. Our

proposed sharing-aware online algorithms are improved designs of lassial sharing-oblivious

online algorithms for vetor bin paking whih take page sharing into aount when making

alloation deisions in loud environments with heterogeneous server apaities and hetero-

geneous resoure VM requests. We introdue a new server resoure sarity metri neessary

for designing sharing-aware online Best-Fit and Worst-Fit type algorithms. Our server re-

soure sarity metri onsiders all VM resoure requirements, server's available resoure

apaities and page-sharing to identify a server with the highest priority to instantiate an

online VM request. We formulate the �o�ine� sharing-aware VM paking problem as a

multilinear boolean program whih when solved provides the optimal VM to server assign-

ments. We perform extensive experiments to ompare the performane of our sharing-aware

online VM paking algorithms against several sharing-oblivious paking algorithms. To the

best of our knowledge, no sharing-aware online algorithms for paking VMs with multiple

heterogeneous resoure apaities and requirements have been proposed to date.

4.1.2 Related Work

Several variants of online vetor bin paking problem modeling the alloation of re-

soures in louds have been reently investigated. Song et al. [88℄ proposed a semi-online bin

paking algorithm for resoure alloation. Their proposed setup allows VMs to be reshu�ed
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through live migration among the servers if resoure onservation an be ahieved. Li et

al. [57℄ introdued novel variants of bin paking algorithms whih attempt to minimize the

total ost assoiated with a server's utilization. Kamali and Ortiz [50℄ improved upon the

upper bound for Next-Fit and introdued a new algorithm, Move To Front, whih performed

the best in the average ase for the online dynami bin paking total ost minimization

problem. Azar et al. [3℄ proposed vetor-bin paking algorithms, analyzed their performane

under various VM sequenes, and established lower ompetitive ratios. Panigrahy et al. [72℄

studied heuristi variants of the First-Fit-Dereasing algorithm for �o�ine� VM alloation.

Resoure awareness is a prevalent topi in designing resoure alloation algorithms for

loud environments. Carli et al. [16℄ formulated a variant of the bin paking problem, alled

Variable-Sized Bin Paking with Cost and Item Fragmentation, whih is energy-aware when

attempting to pak loud resoure requests onto servers in both online and �o�ine� settings.

Breitgand and Epstein [14℄ onsidered a variant of the bin paking problem alled Stohasti

Bin Paking (SBP) whih is risk-aware of network bandwidth onsumption, and designed

both online and approximation algorithms to solve it. Kleineweber et al. [54℄ investigated a

variant of the multi-dimensional bin paking problem whih is QoS-aware relative to loud

�le systems, spei� to storage virtualization. Zhao et al. [109℄ designed online VM algo-

rithms spei� to energy and SLA-violation awareness to inrease a loud provider's revenue.

Xu et al. [105℄ developed a hardware heterogeneity, VM-inferene aware provisioning teh-

nique whih foused on prediting MapRedue performane in the loud. Xiao et al. [104℄

modeled the saling of internet appliations in the loud as a lass of onstrained bin pak-

ing problem and solved the problem using an e�ient semi-online algorithm whih supports

green-omputing. Hao et al. [42℄ proposed an online, generalized VM plaement strategy

whih onsiders variation on loud arhitetures, resoure demand duration and data-enter

loation. Mashayekhy et al. [61℄ designed an online mehanism for resoure alloation and

priing in louds. While these ontributions fous on VM alloation, none of them takes into

aount the potential for memory sharing when making alloation deisions.
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Several systems suh as Satori [65℄, Memory Buddies [101℄, and Di�erene Engine [41℄

onsidered hypervisor-based VM page-sharing, but did not address the design of sharing-

aware online algorithms for VM paking. Sindelar et al. [86℄ were the �rst to propose and

analyze �o�ine� sharing-aware algorithms for the VM Maximization and VM Paking prob-

lems under hierarhial page sharing models. Our work in this hapter di�ers substantially

from Sindelar et al. [86℄ in that we design algorithms for an online setting, onsider multiple-

type VM resoure requests, assume heterogeneous server apaities and operate under a

general sharing model whih frees the limitation of page sharing due to grouping VMs via

hierarhial models.

In Chapters 2 and 3 and our previous work [77, 79℄, we onsidered the design of

sharing-aware �o�ine� algorithms for the VM Maximization problem under the general shar-

ing model. The VM Maximization problem onsidered in our previous work is di�erent from

the problem of VM Paking onsidered in this hapter. The objetive of the VM Maxi-

mization problem is to alloate VM instanes onto a set of servers suh that the pro�t is

maximized, while the objetive of the VM Paking problem is to minimize the number of

servers used to host user requested VM instanes.

4.1.3 Organization

The rest of the hapter is organized as follows. In Setion 4.2, we de�ne the Sharing-

Aware Online VM Paking problem. In Setion 4.3, we present the design of our proposed

online sharing-aware algorithms. In Setion 4.4, we present and solve the �o�ine� version of

the sharing-aware VM paking problem. In Setion 4.5, we ompare the performane of our

proposed algorithms against that of several sharing-oblivious algorithms through extensive

experiments. In Setion 4.6, we summarize our results and present possible diretions for

future researh.
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Table 4.7: SA-OVMP Notation.

Expression Desription

S Set of available servers.

Vj Virtual mahine j.

Sk Server k.

S Set of inative servers; S ⊂ S.
N Maximum number of pages between Sk and Vj .

M Number of servers in on�guration; |S| = M .

quj Requested number of CPUs by Vj (ores).

qmj Requested amount of memory by Vj (GB).

qsj Requested amount of storage by Vj (GB).

Cu
k CPU apaity of server Sk (ores).

Cm
k Memory apaity of server Sk (GB).

Cs
k Storage apaity of server Sk (GB).

R Subset of server resoure types u and s; R = {u, s}.
ekj Server sarity metri relative to Sk and Vj .

skj Shared pages requested for Vj and managed by Sk.

V Set of available �o�ine� virtual mahines.

P(V) Power set of �o�ine� virtual mahines V .
J Index of �o�ine� virtual mahines in P(V).

4.2 SA-OVMP: Problem

We now introdue the Sharing-Aware Online Virtual Mahine Paking (SA-OVMP)

problem from the perspetive of a loud servie provider. The notation used in the hapter

is presented in Table 4.7.

We onsider a loud servie provider that o�ers resoures in the form of VM instanes

to loud users. A VM instane is denoted by Vj and is haraterized by a tuple [quj , q
m
j , qsj ],

where quj is the number of requested CPUs, qmj is the amount of requested memory, and

qsj is the amount of requested storage. The loud servie provider has a set S of servers

available for instantiating user requested VMs. Eah server Sk ∈ S is haraterized by a

tuple [Cu
k , C

m
k , Cs

k], where Cu
k is the number of available CPUs, Cm

k is the available memory

apaity, and Cs
k is the available storage apaity. We denote by R the subset of resoure

types omposed of CPUs (type denoted by u) and storage (type denoted by s), that is,

R = {u, s}. The memory resoure (type denoted by m) is not inluded in R sine in the

design of our algorithms we will treat the memory resoure di�erently by onsidering memory
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sharing among the VMs olloated on the same server. For simpliity of presentation, we

only onsider these three types of resoures; but the SA-OVMP problem and our algorithms

in Setion 4.3 an be easily extended to a general setting with any number of resoures.

When several VM instanes are hosted on a server Sk, and they use a ommon subset

of memory pages, the total amount of memory alloated to those VM instanes an be

redued through page-sharing. For example, when two Mirosoft Windows 8 VM instanes

are olloated on the same server, they an share a signi�ant amount of pages and the total

alloated memory to those two VM instanes an be redued signi�antly ompared to the

ase in whih page sharing is not onsidered. To determine the amount of memory sharing

among olloated VM instanes, the loud provider uses a staging server that omputes

the memory �ngerprints [101℄ of the VM instane that is ready for alloation on one of

the servers. The �ngerprint of the VM instane is then used to determine the amount of

memory sharing (in pages), denoted by skj , whih ours among the urrently onsidered VM

instane, Vj , and the VM instanes that are already hosted by server Sk. Bloom �lters [101℄

are used to identify the number of shared pages skj between VM Vj requested pages and pages

already alloated to server Sk. This proess has runtime omplexity of O(N); where N is

the maximum between the number of pages managed by server Sk and those pages required

by Vj .

The loud provider is interested in hosting all VM instanes requested by the users

while ativating the minimum amount of servers. The requests for VM instanes arrive

one by one and the loud provider deides the assignment of a newly arrived VM request

without knowing any information about future requests. Thus, this is an online setting and

the loud provider must rely on online algorithms to assign VMs to servers. Our goal is to

design suh online algorithms for VM paking that take the sharing of memory into aount

when making alloation deisions. We formulate the Sharing-Aware Online VM Paking

(SA-OVMP) problem as follows,



www.manaraa.com

79

SA-OVMP problem: We onsider a loud provider having a set of servers, S =

{S1, S2, . . . , S|S|}, where eah server Sk ∈ S is haraterized by [Cu
k , C

m
k , Cs

k℄, and

a sequene of VM requests {V1, V2 . . . , Vj, . . .}, arriving one by one, where eah

VM request Vj is haraterized by [quj , qmj , qsj ℄. A VM request must be assigned

to a server Sk ∈ S upon arrival, so that the following apaity onstraints are

satis�ed:

Cm
k − qmj + skj ≥ 0 (4.1)

Cr
k − qrj ≥ 0, ∀r ∈ R (4.2)

where skj is the amount of memory sharing among the urrently onsidered in-

stane Vj and the VM instanes that are already hosted by server Sk. The

objetive is to minimize the total number of ative servers neessary to serve the

requests.

Equation 4.1 is the memory apaity onstraint, guaranteeing that the available mem-

ory apaity of server Sk is not exeeded. The available apaity Cm
k − qmj is adjusted for

the amount of sharing, skj , between Vj and the VM instanes already hosted by Sk. The

onstraints in Equation 4.2 guarantee that the apaities of the other types of resoures of

server Sk are also not exeeded.

4.3 SA-OVMP: Algorithms

In this setion, we design sharing-aware online algorithms for solving the SA-OVMP

problem. Before desribing the algorithms we introdue few de�nitions and assumptions

onerning the servers. The servers managed by the loud provider are in one of the following

two states: ative and inative. An ative server is a server that is powered on and is

urrently onsidered for alloation by the algorithms. An inative server is a server that is

not powered on and is not urrently onsidered for alloation by the algorithms. We denote

by S the set of inative servers. When all the VMs hosted by a server are terminated the

server beomes an inative server and an be ativated in the future. Initially, all servers
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V6V5V4V3V2V1

S1 : {∅} S2 : {∅}

S3 : {∅} S4 : {∅}

Vj units {1} {2} {3} {4} {5} {6} Sk {1} {2} {3} {4}
qmj 4 MB 4 6 5 6 8 6 Cm

k 16 12 12 8

quj 4 CPUs 1 2 1 5 5 1 Cu
k 8 8 6 4

qsj 256 GB 1 1 2 1 2 1 Cs
k 8 4 2 1

Figure 4.1: SA-OVMP: VM Requests and Resoure Con�guration.

are inative servers, i.e., S = S. All the sharing-aware algorithms presented in the hapter

assume that the amount of sharing, skj , among the urrently arrived VM Vj and the VMs

hosted by ative server Sk, was already determined through memory �ngerprinting on the

staging servers as desribed in Setion 4.2.

To illustrate how eah of our sharing-aware online algorithms works, we onsider an

instane of the SA-OVMP problem with the resoure on�guration presented in Figure 4.1.

Eah server in Figure 4.1, S1 through S4, is haraterized by the number of CPUs (eah

irle orresponds to 4 CPU ores available in the left retangle within eah server image),

memory in MB (eah small square orresponds to 4 MB of available memory, in the middle,

larger square within eah server image) and storage in GB (to whih, a mesh blok will

orrespond to 256 GB of available memory and �ll the empty spae in the right retangle

within eah server image). The diagonal lines in eah of the servers orrespond to either

unavailable memory or storage. By representing the servers in this way, we an apture the

heterogeneity of available server resoure apaities. Initially, there are no VMs alloated
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to the servers. This is represented by Sk : {∅} plaed above eah server image. Eah

VM in Figure 4.1, V1 through V6, is haraterized by the same set of resoure types as the

servers and their requests are identi�ed by shaded irles, shaded squares, and shaded mesh

bloks (using the same units of measure as used for the servers, where one irle orresponds

to 4 CPUs, one square orresponds to 4 MB, and one mesh blok orresponds to 256 GB

of storage). For instane, VM V4 requests 20 CPUs, 24 MB of memory for a spei� set

of appliations, libraries, et., in exatly the memory pattern illustrated within the middle

square and, lastly, it requests 512 GB of storage identi�ed by the two mesh bloks at the

bottom of the VM image. When we illustrate how our sharing-aware online algorithms work,

the server resoures will be redued inrementally in the inluded table and the spae within

the server for eah resoure type will be shaded aording to the respetive VM requests.

Lastly, page sharing is identi�ed when two or more VMs request memory by imposing a

shaded rhombus on top of the memory blok whih is shared. Page sharing is illustrated in

Figure 4.2 through Figure 4.12 for eah of the proposed algorithms.

4.3.1 Next-Fit-Sharing (NFS) Algorithm

In order to design NFS, we need to introdue a third type of state for servers, alled

losed. A losed server is already hosting VM instanes and is not urrently onsidered for

alloation by the algorithm. The NFS algorithm is given in Algorithm 5 and works as follows.

Upon arrival of VM request Vj, the loud provider determines if Vj an be paked onto the

ative server denoted by Sk̃ ∈ S \ S. Only one server is ative at any time and server S1

is initially ativated upon the �rst VM arrival. If ative server Sk̃ has enough apaity for

every resoure type to instantiate Vj while onsidering the sharing of memory, sk̃j , then Vj is

paked onto server Sk̃ (lines 3 and 4). Else, server Sk̃ is losed using a funtion lose (line 6)

and the searh begins for �nding a server whih has enough resoure apaity to instantiate

Vj. We note that for problem instanes with servers having the same resoure types and size

harateristis, the next server will automatially su�e if every server has enough apaity

for every VM type. For servers with heterogeneous resoure harateristis (whih is the
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Algorithm 5 NFS

1: Input: VM instane arrival (Vj)

2: {S
k̃
: urrently ative server.}

3: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

4: Sk̃ ← Sk̃ ∪ {Vj}
5: else

6: lose(Sk̃)

7: k̃ ← k̃ + 1
8: while (k̃ ≤ |S|) do
9: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

10: ativate(S
k̃
)

11: S ← S \ {Sk̃}
12: break

13: k̃ ← k̃ + 1

14: if (k̃ > |S|) then
15: exit

16: S
k̃
← S

k̃
∪ {Vj}

17: [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ ← [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄

ase in our SA-OVMP problem), a searh must ensue to �nd a server whih meets the Vj's

resoure demand.

Following server Sk̃'s losure, server index k̃ is inremented (line 7). The algorithm

enters a while loop to searh for a server among the inative servers whih an host Vj (line

8). If the Vj 's resoure demand an be satis�ed by server Sk̃, then the server is ativated by

a funtion ativate, removed from the set of inative servers, and the algorithm leaves the

while loop (lines 10 - 12). Else, the searh ontinues within the while loop by inrementing

server index k̃ until a server is found with enough resoures to host Vj (line 13). Following

the while loop, if the server index exeeds the number of available servers, Vj annot be

hosted and the algorithm exits (lines 14 and 15). Otherwise, the algorithm found a suitable

server Sk̃ within the available servers and Vj is alloated to Sk̃ (line 16). Lastly, server Sk̃'s

resoure apaities are redued aordingly (line 17).

The di�erene between NFS and a standard sharing-oblivious Next-Fit (NF) algorithm

modi�ed for VM alloation is that page sharing is aounted for in NFS and a searh is

performed to �nd a server whih meets the inoming VM request. The standard sharing-
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S1 : {V1, V2, V3} S2 : {V4}

S3 : {V5} S4 : {V6}

Figure 4.2: NFS: VM Assignment

oblivious NF algorithm has a runtime of O(1) when alloating a VM request to servers,

where eah server has the same initial resoure type apaities. In the ase of NFS, the

run time inreases due to the searh for the next server whih an host Vj; resulting in a

run time of O(M) in the worst ase, where M is the number of servers under management.

Lastly, alloating Vj requires searhing for page sharing relative to only one ative server Sk̃

as desribed in Setion 4.2, thus resulting in a total run time of O(NM) for NFS.

Figure 4.2 illustrates the assignment of VMs to servers aording to NFS for the SA-

OVMP instane presented in Figure 4.1. All six VMs are assigned sequentially from V1 to V6.

VMs V1, V2 and V3 are assigned to S1; whih is initially ative. When V4 arrives, it annot

be assigned to S1 due to over-ommitting the CPU apaity. Server S1 is then losed, S2

is found to satisfy V4's resoure request at whih time S2 is ativated and V4 is assigned

to it. Next, V5 arrives and annot be assigned to S2 due to over-ommitting the memory

apaity. Server S2 is then losed, S3 is found to satisfy V5's resoure request at whih time

S3 is ativated and V5 is assigned to it. Lastly, V6 arrives and annot be assigned to S3 due

to over-ommitting the storage apaity. Server S3 is then losed, S4 is found to satisfy V6's

resoure request at whih time S4 is ativated and V6 is assigned to it. NFS requires all four

servers in order to assign the VMs. For the SA-OVMP problem instane onsidered here, the
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Algorithm 6 FFS

1: Input: VM instane arrival (Vj)

2: k̃ ← 0
3: flag ← 1

4: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

5: flag ← 0
6: break

7: k̃ ← k̃ + 1
8: if (flag) then

9: while (k̃ ≤ |S|) do
10: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

11: ativate(Sk̃)

12: S ← S \ {Sk̃}
13: break

14: k̃ ← k̃ + 1

15: if (k̃ > |S|) then
16: exit

17: S
k̃
← S

k̃
∪ {Vj}

18: [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ ← [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄

sharing-oblivious NF implementation would also require all four servers to assign the VMs;

albeit, more memory would be onsumed on server S1.

4.3.2 First-Fit-Sharing (FFS) Algorithm

We now introdue the FFS algorithm whih is similar to NFS exept that servers are

never losed when a VM request annot �t into a server. Rather, any server that annot

aommodate the urrent VM request will remain ative in antiipation of another VM

request whih an be aommodated. FFS is given in Algorithm 6 and works as follows.

Upon arrival of VM request Vj, a searh ensues to determine the �rst ative server Sk̃

from the set of ative servers S\S, whih has enough apaity for every resoure type to host

Vj while onsidering memory sharing in the amount of skj . To simplify the desription of the

algorithm, we assume that all ative servers are plaed before any of the inative servers in

the searh sequene. The algorithm exeutes a while loop to searh for the �rst ative server

Sk̃ that meets Vj's resoure demand in onsideration of memory sharing (line 4). If a suitable

server is found among the ative servers, then flag is set to 0, and the algorithm leaves the

while loop (lines 5 - 7). Else, the searh ontinues within the while loop by inrementing
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S1 : {V1, V2, V3, V6} S2 : {V4}

S3 : {V5} S4 : {∅}

Figure 4.3: FFS: VM Assignment

server index k̃ until a server with enough resoures to host Vj is found (line 8). If there

are no ative servers whih an host Vj , flag is still 1, signalling the need to searh for a

suitable server among the set of inative servers. The searh proess among the inative

servers (lines 10 - 15) is similar to NFS (Algorithm 5, lines 8 - 16) exept that upon reahing

the flag if ondition, server index k̃ has already been inremented to the �rst inative server.

If k̃ is greater than the number of available servers in the ative or inative server searh, the

algorithm exits (lines 16 - 17). If a suitable server Sk̃ has been found from either the ative

or inative servers, Vj is assigned to Sk̃, and Sk̃'s resoure apaities are redued aordingly

(lines 18-19).

The di�erene between FFS and the standard sharing-oblivious First-Fit (FF) algo-

rithm modi�ed for VM alloation is that page sharing is aounted for in FFS and a searh

for a server whih meets the inoming VM request is performed. FFS undergoes the same

�ngerprinting proess mentioned in Setion 4.2 to determine similar pages (taking O(N)

time) and searhes for either the �rst ative server whih meets the VM resoure request

over the set of ative servers, or determines the �rst inative server to ativate in order to

satisfy the VM resoure request. Sine the run time of the searh an be at most O(M),

FFS has a run time omplexity of O(NM) for alloating one VM request.
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In Figure 4.3, we present the assignment of VMs using FFS for the SA-OVMP instane

from Figure 4.1. VMs V1, V2 and V3 are assigned to S1; whih is initially ativated. When V4

arrives, it annot be assigned to S1 due to over-ommitting the CPU apaity. Server S2 is

found to satisfy V4's resoure request at whih time server S2's state is hanged from inative

to ative and V4 is assigned to it. Next, V5 arrives and annot be assigned to either S1 or S2

due to over-ommitting the CPU apaity. Server S3 is found to satisfy V5's resoure request

at whih time server S3's state is hanged from inative to ative and V5 is assigned to it.

Lastly, V6 arrives and aording to the searh, V6 an be assigned to S1 sine it is still in an

ative state. By onsolidating the VM request to an already ativated server whih was not

losed, FFS ativates fewer servers, and thus, ahieves better performane than NFS.

4.3.3 Best-Fit-Sharing (BFS) Algorithm

In order to design BFS, we introdue the server resoure sarity metri whih hara-

terizes the sarity of aggregate resoures at a given server relative to the requested resoures

by a VM. The lassial sharing-oblivious Best-Fit (BF) paking algorithm plaes a new item

into the bin with the least remaining urrent apaity aording to one dimension, i.e., the

size of the item in one dimension. Sine the SA-OVMP problem onsiders multiple resoure

requirements, we have to onsider all required resoures and available apaities when de-

termining the appropriate server for alloating the VM request. To be able to ahieve

this, we de�ne the server resoure sarity metri as follows:

ekj =















































max

{

qmj −
√

sk
j

Cm
k

,
quj
Cu

k

,
qsj
Cs

k

}

if Cm
k − qmj + skj ≥ 0 &

Cu
k − quj ≥ 0 &

Cs
k − qsj ≥ 0

0 otherwise

(4.3)

The metri haraterizes the sarest resoure among all resoure types from server Sk

relative to Vj's resoure requirements. Eah resoure request type is expressed as a remaining

resoure ratio in Equation 4.3 relative to the available server apaity type, if Vj were to
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be instantiated on Sk. These ratios are only relevant if the Vj 's resoure requests do not

over-ommit any of the resoure apaities on server Sk. The maximum remaining resoure

ratio among the three resoure types re�ets the sarest remaining resoure after server Sk

instantiates VM Vj . In Equation 4.3, sharing in�uenes the memory request by

√

skj instead

of skj in the numerator. This way we avoid situations where VM Vj has a sizable memory

request whih shares a signi�ant amount of pages with already hosted VMs making the

memory resoure appear less sare when ompared to the other resoures. Lastly, if Vj's

resoure demand over-ommits any of the server Sk's apaities, then the value of the server

resoure sarity metri will be 0 indiating an absene of opportunity to assign Vj to Sk.

BFS is given in Algorithm 7 and works as follows. Upon the arrival of VM request

Vj, a searh ensues to determine the ative server Sk̃ ∈ S \ S whih would have the least re-

maining single resoure after instantiating VM Vj (i.e., the sarest resoure). The algorithm

alulates the resoure sarity metri for eah server in the set of ative servers through a

while loop (line 4). If at least one ative server has enough resoure apaities to meet the

Vj's resoure demand (line 5), then flag will be set to 1, whih guarantees that Vj will be

assigned to one of the ative servers, and the Vj resoure sarity metri is alulated relative

to Sk (lines 6 and 7). Else, at least one of the resoure requests violates at least one of the

urrent ative server apaities, and then the server resoure sarity metri would be 0 for

those servers (line 9). Calulating the resoure sarity metri among the ative servers on-

tinues within the while loop by inrementing server index k̃ until the �rst inative server is

found (line 10). If flag is set to 1 following the while loop, then the index of the server with

the maximum resoure sarity metri is determined and stored in k̃ (line 12). If no ative

servers have enough resoures available to host Vj aording to resoure sarity metri, then

a searh for a suitable server among the set of inative servers ours (lines 14 - 21) exatly as

in FFS (Algorithm 6, lines 10 - 17). Lastly, VM Vj is then assigned to server Sk̃ whih would

have the least remaining resoure following instantiation and server Sk̃'s resoure apaities

are redued aording to Vj's resoure demand (lines 22 - 23).
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Algorithm 7 BFS

1: Input: VM instane arrival (Vj)

2: k̃ ← 0
3: flag ← 0
4: if ([Cm

k , Cu
k , C

s
k℄ − [qmj − skj , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

5: flag ← 1

6: ekj ← max







qmj −
√

skj

Cm
k

,
quj

Cu
k

,
qsj

Cs
k







7: else

8: ekj ← 0

9: k̃ ← k̃ + 1
10: if (flag) then

11: k̃ ← argmax{ekj }
12: else

13: while (k̃ ≤ |S|) do
14: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

15: ativate(S
k̃
)

16: S ← S \ {S
k̃
}

17: break

18: k̃ ← k̃ + 1

19: if (k̃ > |S|) then
20: exit

21: S
k̃
← S

k̃
∪ {Vj}

22: [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ ← [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄

There are several di�erenes between BFS and the sharing-oblivious version of the

BF algorithm. From a general point of view, BF assigns items into bins based on the least

remaining spae after item plaement. When onsidering BF for VM alloation, the algorithm

would only aount for a single resoure. When multiple resoures are onsidered, BF an

have several interpretations for alloating VMs to servers based on various resoures. BFS is

more preise in that it is guided by the least remaining resoure among all resoures identi�ed

by the metri in Equation 4.3. Another di�erene is that BFS aounts for page sharing

within eah server when alloating the inoming VMs, whereas the standard BF algorithm

does not. Provided the similarities between BFS and FFS, the run time omplexity of BFS is

also O(NM), whih inludes alulating the resoure sarity metri for any inoming VM

relative to the available, ative servers.
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V1 sk1 ek1 Cm
k Cu

k Cs
k

S1 0 0.250 16 8 8

S2 0 0.333 12 8 4

S3 0 0.5 12 6 2

S4 0 1.000 8 4 1

S1 : {∅} S2 : {∅}

S3 : {∅} S4 : {∅}

Figure 4.4: BFS: Init

V2 sk2 ek2 Cm
k Cu

k Cs
k

S1 0 0.375 16 8 8

S2 0 0.500 12 8 4

S3 0 0.500 12 6 2

S4 0 0.000 4 3 0

S1 : {∅} S2 : {∅}

S3 : {∅} S4 : {V1}

Figure 4.5: BFS: VM 1 Assignment

We now illustrate the assignment proess of BFS using the SA-OVMP instane from

Figure 4.1. Figures 4.4, 4.5, and 4.6 illustrate the proess for VMs V1 through V3. The

amount of sharing, sk1, and the server resoure sarity metri, ek1, are alulated relative

to V1 and the servers within the on�guration. Sine there are no VMs assigned to the

server, sk1 is zero and a server whih will leave the least amount of a single resoure following

instantiation is seleted (i.e., the best �t server). Server S4 has the highest value for the

resoure sarity metri sine the resoure apaities are lower than the rest of the servers.

Therefore, V1 is assigned to S4 and S4's apaities are redued aordingly and updated.

Next, V2 is ready for instantiation. All sk2, are 0 sine no pages are shared with V1.

The server resoure sarity metri is the same for both S2 and S3. The resoure whih will

yield the least remaining spae per our metri is the memory, where both S2 and S3 o�er

the same memory apaities. To break the tie, we selet the lowest indexed server with the
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V3 sk3 ek3 Cm
k Cu

k Cs
k

S1 0 0.313 16 8 8

S2 2 0.774 6 6 3

S3 0 1.000 12 6 2

S4 3 0.000 4 3 0

S1 : {∅} S2 : {V2}

S3 : {∅} S4 : {V1}

Figure 4.6: BFS: VM 2 Assignment

V4 sk4 ek4 Cm
k Cu

k Cs
k

S1 0 0.625 16 8 8

S2 2 0.942 6 6 3

S3 4 0.000 7 5 0

S4 3 0.000 4 3 0

S1 : {∅} S2 : {V2}

S3 : {V3} S4 : {V1}

Figure 4.7: BFS: VM 3 Assignment

highest server resoure sarity metri, e.g., S2, to host V2 and the resoure apaities of

S2 are updated. Relative to server S4, e
4
2 = 0 sine there is not enough memory available.

Next, V3 is ready for instantiation. With V1 assigned to S4 and V2 assigned to S2, V3 has

two opportunities to share pages, leading to s23 = 2 and s32 = 3. Upon alulating the server

resoure sarity metris, it is determined that V3 should be assigned to S3 due to the sarity

of storage whih ours following instantiation against the other servers.

The BFS assignment for VMs V4 through V6 are illustrated in Figures 4.7, 4.8 and

4.9. VM V4 will be assigned to S2 due to the CPU resoure being the most sare resoure

following instantiation when ompared to S1. The assignment of V5 to server S1 is by default

sine the other servers do not have enough CPU apaities to instantiate the request. Lastly,

V6 arrives and due to both the CPU requests, the resoure sarity metri has a value of 1.0
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V5 sk5 ek5 Cm
k Cu

k Cs
k

S1 0 0.438 16 8 8

S2 4 0.000 2 1 2

S3 2 0.000 7 5 0

S4 2 0.000 4 3 0

S1 : {∅} S2 : {V2, V4}

S3 : {V3} S4 : {V1}

Figure 4.8: BFS: VM 4 Assignment

V6 sk6 ek6 Cm
k Cu

k Cs
k

S1 0 0.627 8 7 6

S2 4 1.000 2 1 2

S3 2 0.000 7 5 0

S4 2 0.000 4 3 0

S1 : {V5} S2 : {V2, V4}

S3 : {V3} S4 : {V1}

Figure 4.9: BFS: VM 5 Assignment

S1 : {V5} S2 : {V2, V4, V6}

S3 : {V3} S4 : {V1}

Figure 4.10: BFS: VM Final Assignment

relative to S2 whih is the largest. Thus, V6 is assigned to S2. The �nal VM assignment for

the SA-OVMP instane onsidered here is illustrated in Figure 4.10.



www.manaraa.com

92

4.3.4 Worst-Fit-Sharing (WFS) Algorithm

Sine WFS an be viewed as the dual of BFS and thus, its struture and implementa-

tion are nearly idential to that of BFS, we will not provide a formal algorithmi desription

of it. The only di�erene between the two algorithms is that WFS alloates the new VM

request to an ative server with the minimum server resoure sarity metri, i.e., assigns the

VM to the server whih leaves the most remaining single resoure following instantiation.

WFS requires a hange from argmax{ekj} to argmin{ekj} in BFS (line 11) and the maximum

operator in Equation 4.3 is hanged to the minimum operator. Due to the similarity to BFS,

the run time omplexity of WFS is also O(NM).

4.4 O�ine Sharing-Aware VM Paking

In this setion, we present a multilinear programming formulation of the �o�ine�

Sharing-Aware VM Paking problem. This problem di�ers from the online version in Se-

tion 4.2 sine it assumes that the set of VM requests, V, is known a priori. In order for a

solution to exists, we have to guarantee that enough servers are available to host all Vj ∈ V.

The objetive of the servie provider is to host all Vj ∈ V, while minimizing the number

of ative servers neessary for instantiating the VMs in V. We formulate this problem as a

multilinear boolean program in Equations 4.4 through 4.10

A boolean deision vetor y ∈ {0, 1}M is the solution to our program from Equa-

tion (4.4); where the ative servers are identi�ed by yk = 1, inative servers are identi�ed

by yk = 0, and B is the sum of the total number of ative servers over all omponents of y.

The onstraint in Equation (4.6) ensures that Vj is not assigned to more than one server,

where xjk re�ets the assignment of VM Vj to a single server Sk. Equation (4.7) is a re-

soure apaity onstraint whih ensures that the subset of instantiated VM requests do not

violate the server apaities, Cr
k , the provider has available in terms of CPUs, r = u, and

storage, r = s. Equation (4.8) is the memory apaity onstraint and ensures that the VMs

requesting memory do not violate the servie provider's memory apaities whih onsiders

the e�et of page dedupliation. Equations (4.9) and (4.10) ensure deision variables yk and
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S1 : {V1, V2, V5} S2 : {V3, V4, V6}

Figure 4.11: Optimal VM Assignment

xjk are boolean.

minimize: B =
∑

k:Sk∈S

yk (4.4)

subjet to: (4.5)

∑

k:Sk∈S

xjk = 1, ∀j : Vj ∈ V (4.6)

∑

j:Vj∈V

qrjxjk ≤ ykC
r
k , ∀k : Sk ∈ S, ∀r ∈ R (4.7)

∑

J∈P(V)

(−1)(|J |+1)σJ

∏

ĵ∈J

xĵk ≤ ykC
m
k , ∀k : Sk ∈ S (4.8)

∀ yk ∈ {0, 1} (4.9)

∀ xjk ∈ {0, 1} (4.10)

Figure 4.11 shows the solution of our multilinear program for the SA-OVMP instane

from Figure 4.1. The optimal solution paks VMs V1 through V6 onto two servers, leading to

a lower number of ative servers than any of the online algorithms proposed in Setion 4.3.

The novelty of our multilinear program formulation is in how the memory onstraint takes

into aount the memory requests with regards to page sharing. To desribe the onstraint,

we onsider an example using VMs V3, V4 and V6 and server S2.

In Equation (4.8), we denote by P(V), the power set of the set of available VMs, V,

and index the elements from this power set using J . We de�ne the sharing parameter σJ

as the variable whih represents the number of shared pages among the VMs in set J . As

an example, for |J | = 3, we have σ346 = 3, i.e., all VMs in J whih inlude V3, V4 and
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V6 share 3 pages between them. We alulate the sharing parameter σJ for all the sets of

the power set P(V) indexed by J , and organize them by ardinality in Figure 4.12. When

|J | = 1, the sharing parameter σJ represents the amount of memory resoure in number

of pages requested by Vj, i.e., σj = qmj . By ombining the set of values representing the

number of shared pages and the number of pages required by eah VM, we an dedue the

number of unique pages, i.e., pages whih are required to instantiate a subset of VMs and are

available to be shared among requesting VMs. To alulate the number of unique pages in

equation (4.8) we need to introdue an adjustment parameter, (−1)(|J |+1)
, whih adjusts the

alulation of the number of unique pages aording to the ardinality of J . By referening

Figure 4.12, we an alulate how many unique pages are required in order to instantiate

VMs V3, V4 and V6 and ompare this to S2's memory apaity, Cm
2 , as follows,

(+1)(σ3 + σ4 + σ6) + (−1)(σ34 + σ36 + σ46) + (+1)(σ346) ≤ Cm
2

(4.11)

By substituting the values for σJ from Figure 4.12 and performing the alulation

above in Equation 4.11, we arrive at 8 unique pages whih are required to alloate V3, V4

and V6, when sharing pages is onsidered; onsistent with the number of olored pages in

Figure 4.12. In most ases, only a subset of the VMs may be hosen for instantiation based on

the servie provider's memory resoure. Therefore, the onstraint in Equation (4.8) onsists

of the produt of boolean deision variables, xj̃k, where j̃ is an index orresponding to any

VM Vj̃ within the VM subset ombination J , on the sharing parameter σJ , and the unique

page adjustment parameter (−1)(|J |+1)
.

In order to optimally solve the �o�ine� Sharing-Aware VM Paking problem, we use

the AMPL [30℄ mathematial programming framework and an open-soure solver, Couenne [8℄,

whih employs a branh & bound algorithm for solving mixed integer nonlinear programs

in general; whih is appliable to solving our multilinear program. The �o�ine� Sharing-

Aware VM Paking problem is a new and more omplex variant of the bin paking and

extends harateristis from the set-union bin paking problem initially onsidered in Tang
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|J | = 2|J | = 1 |J | = 3
σ3 = 5

σ4 = 6

σ6 = 6

σ34 = 4

σ36 = 3

σ46 = 5

σ346 = 3

S2 : {V3, V4, V6}

Figure 4.12: Sharing parameter values among V3, V4 and V6

and Denardo [93℄. Sine bin paking and its variants are strongly NP-hard, we infer that

our �o�ine� Sharing-Aware VM Paking problem is also strongly NP-hard. Therefore, solv-

ing the �o�ine� Sharing-Aware VM Paking problem is only pratial for small problems.

Solving the �o�ine� version of the SA-OVMP problem instane in Figure 4.1 only takes a few

seonds; although, when we inreased the number of VMs to 15 and the number of servers

to 8, the time required to solve the problem was approximately 22 minutes. Therefore,

heuristi methods, suh as those desribed in Setion 4.3, are required in order to e�iently

solve problem instanes with a large number of VMs and servers onsidered in real-world

appliations.

4.5 Experimental Results

In this setion, we desribe the experimental setup inluding our strategy for generat-

ing VM streams, simulating server on�gurations, and modeling page sharing. We perform

extensive experiments with our sharing-aware online algorithms and their sharing-oblivious

ounterparts and then analyze the results.

4.5.1 Experimental Setup

All software used for the experiments is implemented in C++ and is run on 2.93

GHz Intel hexa-ore dual-proessor 64-bit systems within the Wayne State University HPC

Grid [102℄.
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Low Resoure Request VMs in Experiments High Resoure Request VMs in Experiments

Resoure {n1s1} {n1s2} {n12} {n1m2} {n14} {n18} {n1s4} {n1m4} {n1s8} {n1m8} {n1s16} {n116}

Memory (GB) 3.75 7.50 1.80 13 3.6 7.20 15 26 30 52 60 14.40

CPU 1 2 2 2 4 8 4 4 8 8 16 16

Table 4.8: SA-OVMP Experiment: VM Instane Types.

VM Streams

Fairly reently, Google has made workload usage traes from Google ompute ells [83℄

available to the publi. Researhers have thoroughly investigated various omponents of the

usage traes, suh as appliations [26℄ and workloads [67℄ [81℄ [59℄. Signi�ant to our ex-

periments is the arrival pattern of VM resoure requests and how our proposed algorithms

behave under these patterns. Based on existing researh [81℄ [17℄, it has been onluded that

there are no standard distributions whih �t the pattern of VM resoure requests. Some

statistial properties have been revealed suh as, resoure requests exhibiting a heavy-tailed

distribution [81℄, requests re�eting degrees of fratal self-similarity [17℄, and the proportion

of lower memory and CPU requests signi�antly outweigh higher memory and CPU requests

within the trae [82℄. Given the di�ulties in identifying overall arrival and request hara-

teristis from the traes, we design a broad range of VM streams whih provide numerous

variations on the mixture of requested VM types, arrival orderings (whih is signi�ant for

online settings).

For our experiments, we onsider the resoure request harateristis from Google

Compute Engine VM types whih are listed in Table 4.8 and are available online [38℄. We

divide the VMs into two ategories, low resoure request and high resoure request, based

mostly on the memory and CPU request ombinations. We keep n1m2 and n18 in the lower

resoure ategory sine n1m2 only requests 2 CPUs and n18 requests a very low amount of

memory ompared to those VMs in the high resoure request ategory. We de�ne a stream as

a sequene of either 500 or 1000 VMs requests whih exhibit various perentages of mixture

between low and high VM resoure requests. We design a set of VM streams aounting for
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Figure 4.13: 85% Low Request 1000 VM Stream.

various VM type mixtures in inrements of 5%, ranging from 5% low (and 95% high) to 95%

low (and 5% high) resoure requests.

Therefore, in order to test the performane of our algorithms, we onsider ommon

and unommon workloads whih span the VM resoure request mixtures. For eah VM

stream, we randomly selet VMs from eah of the two requesting ategories, until a desired

perentage of mixture is ahieved. As an example, for the 85% low request 1000 VM stream,

we selet uniformly at random 850 VMs from the low requesting ategory, leaving 150 VMs

to be seleted uniformly at random from the high requesting ategory in order to omplete

the stream. One all the streams have been designed, we generate �ve opies of eah stream

and identify them by r1 through r5. Eah r1 through r5 stream per mixture ombination

is then randomly shu�ed using the C++ faility random_shu�e and the standard uniform

random generator. Eah r1 through r5 stream is shu�ed a di�erent number of times suh

that the stream sequenes exhibit a fairly signi�ant variability from eah other. We aount

for 19 mixture ombinations with 5 di�erent orderings for eah mixture per 500 and 1000 VM

streams; totaling 190 unique VM streams used in our experiments. Figure 4.13 illustrates

a 85% low requesting resoure 1000 VM r1 stream while Figure 4.14 illustrates a 15% low

requesting resoure 1000 VM r2 stream. We show the di�erent VM types on the vertial

axis and the arrival sequene of the 1000 VMs in the stream on the horizontal axis. Stream

r1 plot shows that the majority of the VM types orrespond to our low resoure requests

(approximately 85% of the VM stream). Stream r2 plot shows that the majority of the VM

types orrespond to our low resoure requests (approximately 15% of the VM stream).
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Figure 4.14: 15% Low Request 1000 VM Stream.

Server Con�gurations

Our experiments onsider the heterogeneity of a loud servie provider's bak-end

infrastruture, i.e., infrastruture omposed of multiple servers with various resoure hara-

teristis. Very few details have been revealed about the exat server on�gurations for major

loud servie providers' infrastruture. Although, researhers studying the Google workload

usage traes have provided fairly aurate results re�eting the number of and resoure har-

ateristis for servers within the ompute ell from whih the trae set was logged [81℄ [59℄. It

was determined that approximately 12,477 servers were used in hosting the requests aptured

in the Google usage trae. Determining the exat apaity spei�ations for these servers is

not possible due to normalization and obfusation tehniques [84℄ used within the trae set;

yet, eah trae event within the set expresses a request ratio of CPU, RAM normalized to

the largest server on�guration (the values of whih are not identi�able from the trae set).

Using these ratios, researhers have been able to derive representations for the dis-

tribution of mahines and their resoure harateristis. Liu et al. [59℄ ategorized these

servers into 15 di�erent apaity groups re�eting variations on (CPU, RAM) ombinations,

where eah ategory re�ets a perentage of the 12,477 servers. The apaity groups, iden-

ti�ed by a tuple (CPU ratio, RAM ratio), are expressed as ombinations of CPU and RAM

server apaity ratios relative to the largest server apaities: .25, .50 and 1.00 for CPU;

.125, .25, .50, .75 and 1.00 for RAM. For instane, the apaity group (.50, .25) exhibits

server apaities that are 50% of the CPU resoure, and 25% of the memory resoure of the

largest mahine, and laims 31% of the 12,477 servers, or approximately 3,835 servers. For
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Figure 4.15: Server Con�gurations.

our experiments, we use the server apaity groups and perentage of group population from

Liu et al. [59℄, and onsider that our largest server has resoure apaities of 48 CPUs and

256 GB RAM. We determine all other server apaities relative to these values. We utilize

500 servers for the 500 VM streams and 1000 servers for the 1000 VM streams, where their

grouping and perentage of population is onsistent with the results from Liu et al. [59℄.

Figure 4.15 illustrates the number of servers per group for the 500 and 1000 VM streams.

For example, we onsider 308 servers from the (24, 48) ategory (i.e., servers with 24 CPUs

and 48 GB of RAM). Lastly, we make available the servers with the smallest apaities �rst

throughout our experiments. In sequene, the server apaity groups ordering orresponds

to: (12, 64), (24, 32), (24, 64), (24, 128), (24, 196), (24, 256), (48, 128) and (48, 256). We

note that only a portion of the server apaity groups were ativated in our experiments,

but hose 500 and 1000 servers as the maximum number of servers that an be ativated.

Modeling Page Sharing

For our experiments, we abstrat a subset of the available software from Google

Cloud Launher [36℄ for the Google VM types. The software ategories available to VMs

in our experiments are ontent management, databases, developer tools, infrastruture and

operating systems. Eah appliation software ategory omprises eight di�erent options, i.e.,

database software options suh as MongoDB, MySQL, Cassandra, Redis, et., as well as ten

operating systems, where four are spei� to server versions and six are desktop versions,

i.e., operating system software options suh as Ubuntu 15.04, Ubuntu Server 14.04 LTS,

Windows Server 2008 R2, et. Previous researh on page sharing has unovered that the
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majority of page sharing ours between operating systems [86℄. Operating systems and their

versions an share a large amount of memory between them; yet, di�erent operating systems

may share almost no memory, e.g., olloating VMs whih run Windows and Linux OS

distributions [86℄. Page sharing opportunities an be further identi�ed between server and

desktop distributions. In some ases, server distributions do not inlude desktop pakages

and the desktop distributions do not inlude server related pakages; but an share kernel

resoures between them, e.g., Ubuntu 12.04 merges linux-image-server into linux-image-

generi.

We model the memory pages requested by appliations and OSs using boolean vetors.

Eah appliation or OS memory request is haraterized by suh a vetor. The entries of

the vetors represent memory pages, where an entry with value 1 signi�es that the page

represented by that entry is requested, while an entry with value 0 signi�es that the page

is not requested. Extensive e�ort has been exerted to build unique vetors re�eting the

operating systems and appliations memory requirements suh that the sharing outomes

are fairly onsistent with the results presented by Sindelar et al. [86℄ and Bazarbayev et

al. [7℄. For eah VM in our experiments we selet uniformly at random one operating system

and one to four appliations to run. We onstrain some of the VM types to ertain operating

system and appliation ombinations, e.g., low request VMs suh as n1s1 will not hoose OS

server distributions sine it is unlikely that a user would request a single pu, low memory

VM to host multiple instanes. Eah server memory pages are also modelled by a boolean

vetor whih is populated with the orresponding entries from the appliation and OS vetors

of the VMs hosted by the server. One a VM has seleted its software ombination vetors

and a server is identi�ed to host the VM, the VM's vetors are ompared to the server's

vetor to determine the pages that an be shared.

4.5.2 Analysis of Results

We now ompare the performane of our proposed sharing-aware online algorithms

from Setion 4.3 against their sharing-oblivious ounterparts. Spei�ally, we show that by
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Figure 4.16: Average Memory Redution: 500 VM Stream.

using our sharing-aware online algorithms the average number of ativated servers is lower,

and a substantial memory redution ours, whih frees up resoures for more VMs to be

paked. We also analyze some worst-ase senarios for the two sets of algorithms.

In Figure 4.16 and Figure 4.17, we ompare the average amount of memory redution

obtained when utilizing the sharing-aware over the sharing-oblivious algorithms for various

server apaity ategories and for 500 and 1000 VM streams, respetively. We ompare our

sharing-aware algorithms, NFS, FFS, BFS, and WFS with sharing-oblivious algorithms, Next-

Fit (NF), First-Fit (FF), Best-Fit (BF), and Worst-Fit (WF). The server apaity ategories

that we sample are identi�ed by a tuple (CPU, RAM). For instane, the server apaity

ategory (24, 64) onsists of the server apaity ategory whih inludes servers with 24

CPUs and 64 GB RAM. Along the horizontal axis for eah sharing-aware algorithm we

show the memory redutions for the following server apaity ategories: (12, 64), (24, 32),

(24, 64) and (24, 128). We note that only in very few instanes servers outside of these

ategories were ativated during our experiment. Along the vertial axis are the perentages

of memory redution obtained by our algorithms when ompared with their sharing-oblivious

ounterparts.

Quantifying the sharing diretly was not straightforward as the sharing-aware and

sharing-oblivious algorithms assigned di�erent VMs to di�erent servers. Therefore, we om-
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Figure 4.17: Average Memory Redution: 1000 VM Stream.

pare the overall memory utilization between eah sharing-aware algorithm and its sharing-

oblivious ounterpart. For both 500 and 1000 VM streams, all the sharing-aware algorithms

tend to exhibit the greatest memory redution on the server group with the largest amount

of memory, i.e., (24, 128). This is beause servers that o�er more memory an aommodate

more VMs as long as CPUs are available. When the number of assigned VMs inreases, so

does the opportunity to share pages, whih leads to more VMs being assigned to the server,

if sharing-aware algorithms are utilized. Lastly, when omparing the results for the 500 VM

streams and the 1000 VM streams, we note that the 500 VM stream tends to generate the

larger redutions for the (24, 128) ase. From our results, the sharing-aware algorithms an

redue the required memory by approximately 25% in the best ase for the largest server

apaity ategory, i.e., (24, 128), and an redue the required memory by approximately 5%

for the worst ase in the smallest server apaity ategory, i.e., (12, 64).

In Figure 4.18 and Figure 4.19, we show the number of servers ativated by the

sharing-oblivious algorithms in exess of those ativated by our sharing-aware algorithms.

We all these servers, the exess servers. In the plots, the sharing-oblivious algorithms have

�ve bars, one for eah resoure mixtures ranging from 65% to 85% in inrements of 5%. For

eah of the requesting resoure mixtures, we plot the number of exess servers the sharing-

oblivious algorithms required over that required by the sharing-aware algorithms. On the
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Figure 4.18: Exess Ative Servers: 500 VM Stream.
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Figure 4.19: Exess Ative Servers: 1000 VM Stream.

horizontal axis, for eah sharing-oblivious algorithm we show the server apaity ategory

whih was found to exhibit the greatest di�erenes.

We note that in Figure 4.18, NF exhibited the greatest di�erenes for a di�erent

server apaity ategory, (24, 128), from the other algorithms in the experiment. For the

VM 500 stream, NF �lled most of the (24, 64) ategory servers. When omparing NF to

NFS in the (24, 64) ategory, they were nearly idential. The greatest variane between the

two algorithms in terms of the greatest number of exess ative servers ourred in the next

largest server apaity ategory, (24, 128). In the worst ases for the VM 500 stream, BF

for (24, 64) and FF for (24, 64) at resoure mixture 70%, required 16 to 17 extra servers



www.manaraa.com

104

WF
WFS

BF
BFS

FF
FFS
NF

NFS

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Average Number of Active Servers: Sharing-Aware vs. Sharing-Oblivious Algorithms Over 500 VM Stream

276
280
235
246
237
246
237
246

268
271
227
237
228
237
228
237

260
263
219
228
221
230
222
230

252
255
208
218
211
219
211
219

244
248
200
208
202
210
203
210

236
239
192
200
194
202
195
202

229
232
184
191
186
194
187
194

219
224
176
183
178
185
178
185

208
211
167
175
169
176
169
176

197
201
157
167
161
169
161
169

187
191
146
159
148
160
149
160

176
181
135
148
136
150
139
150

165
172
124
139
126
141
129
141

153
161
115
129
115
132
121
132

141
148
105
119
105
121
112
121

126
134
98
110
98
111
104
111

112
118
91
100
91
101
95
101

98
103
83
90
84
91
88
91

88
92
77
82
78
82
79
82

Figure 4.20: Average Ative Servers Over All 500 VM Streams.

when ompared to our sharing-aware algorithms. The variability of exess servers in the

ase of BF for (24, 64), is not as pronouned as in the ase of FF for (24, 64) among the

represented resoure mixtures. This implies that the di�erene in performane between FF

and FFS is smaller than in BF and BFS for the worst ases. The results for the VM 1000

stream are fairly similar in dynamis to the ones for the VM 500 stream, with the largest

exesses ourring in the ase of FF for (24, 64) with resoure mixture 70%; aounting for

38 extra servers. From the results of our experiments, we onlude that the sharing-aware

algorithms obtain a signi�ant redution of the number of ative servers whih impliitly

leads to a signi�ant redution of the osts for the loud provider.

In Figure 4.20 and Figure 4.21, we ompare the average number of servers required

to host the VMs for the 500 and 1000 VM streams, respetively, over the entire range of

low-high requesting resoure mixtures. Along the vertial axis are the aronyms for eah

of the sharing-aware and sharing-oblivious algorithms and along the horizontal axis are the

perentages of low resoure requesting VMs in the VM stream. The heat map representation

has the darkest shade of gray when the highest number of servers are used, e.g., for the 500

VM stream the maximum value is 280 by NF, and has the lightest shade of gray when the

lowest number of bins are used, e.g., a minimum value of 77 by FFS also for the 500 VM

stream. The average number of servers are alulated by aggregating the number of ative

servers from VM streams r1 through r5 for eah requesting resoure mixture, dividing by
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Figure 4.21: Average Ative Servers Over All 1000 VM Streams.

�ve and alulating the eiling of the result. The �gures show that all the sharing-aware

online algorithms ativate fewer servers than their respetive sharing-oblivious analogues

in all mixtures. When omparing the sharing-aware online algorithms among themselves,

FFS ativates slightly less servers than BFS. WFS tends to over-ativate only slightly when

ompared to BFS in the lower requesting mixtures. As the number of lower requesting VMs

outweigh the higher requesting VMs in the VM stream, WFS tends to diverge away from the

BFS performane in most ases. Naturally, NFS performs the worst among the sharing-aware

algorithms. Moreover, we �nd that the greatest di�erenes in both the 500 and 1000 VM

streams our around the 60% to 85% low resoure request VM streams whih re�ets the

many low and fewer high resoure requests found typially in usage traes from the urrent

loud servie providers.

4.6 Summary

We designed a family of sharing-aware online algorithms for solving the VM Pak-

ing problem. The experimental results showed that our proposed sharing-aware online al-

gorithms ativated a smaller average number of servers relative to their sharing-oblivious

ounterparts, diretly redued the amount of required memory, and thus, the paking of the

VMs required fewer servers. Future work involves extending our algorithms to environments

with lightweight virtual ontainers suh as Doker ontainers on the Google Kubernetes in-
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frastruture, and to streaming frameworks. Determining the theoretial performane bounds

for the sharing-aware online algorithms is another open avenue for future researh.
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CHAPTER 5: CONCLUSION

In this Ph.D. dissertation, we presented our researh aomplishments in the design

and analysis of sharing-aware resoure management algorithms for virtual omputing envi-

ronments. We onlude the dissertation by summarizing our ontributions and desribing

possible future researh diretions.

5.1 Summary of Contributions

In Chapter 1, we detailed the onepts whih serve as the foundation for under-

standing sharing-aware resoure management by inluding an introdution to virtualization,

an explanation of how page sharing operates, a motivation for formulating page sharing

relationships, and a review of relevant approximation algorithm onepts and models. In

Chapter 2, we addressed the problem of sharing-aware VM maximization, SAVMM, in a

general sharing model by designing a greedy approximation algorithm, G-SAVMM, based on

a new e�ieny metri and haraterized its worst ase performane. We then performed

extensive experiments to evaluate the performane of G-SAVMM against other knapsak-like

VM alloation algorithms. Our results show that G-SAVMM generates higher revenue and

is e�ient when ompared to the other knapsak-like VM alloation algorithms in our ex-

periments. In Chapter 3, we have addressed the problem of multi-resoure sharing-aware

VM maximization, MSAVMM, in a general sharing model. We formulated MSAVMM as a

new multilinear binary program, BMP-MSAVMM, inspired by the 0-1 knapsak formulation

and solved it optimally using smallMSAVMM instanes. For larger, more realisti MSAVMM

instanes, we proposed and designed a greedy approximation algorithm, G-MSAVMM, based

on a new e�ieny metri and haraterized its worst ase performane. In order to evaluate

G-MSAVMM, we detailed unique experiment design strategies through �ltering and synthe-

sizing Google luster workload traes while modeling page sharing behavior using existing

results from the literature. To demonstrate the inrease in performane by G-MSAVMM, we

ompared it with the performane of several other knapsak-like VM alloation algorithms

using the �ltered and synthesized luster Google workload traes. Our results show that
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G-MSAVMM generates muh higher revenue and is extremely e�ient when ompared to the

other algorithms in our experiments. In Chapter 4, we addressed the problem of sharing-

aware online VM paking with multiple resoure requirements and heterogeneous server a-

paities, SA-OVMP, in a general sharing model. We proposed and designed a family of new

sharing-aware online algorithms whih solves SA-OVMP; namely, NFS, FFS, BFS, and WFS.

We introdued a new server resoure sarity metri neessary for designing BFS and WFS

whih established loud server priorities for instantiating online VM requests. We then for-

mulated SA-OVMP as a new multilinear binary program inspired by the 0-1 bin-paking

formulation and have optimally solved it using small SA-OVMP instanes. Lastly, we per-

formed extensive experiments to ompare the performane of our sharing-aware online VM

paking algorithms to that of their sharing-oblivious ounterparts using the Google luster

workload traes and the PM on�gurations on whih they are derived. Our results show

that the proposed family of sharing-aware online algorithms drastially redues the number

of required PMs to instantiate the VM streams when ompared to their sharing-oblivious

ounterparts.

5.2 Future Researh Diretions

We believe our work will enourage new researh in the area of resoure management

within virtual omputing environments. The possible future diretions are presented in the

next subsetions.

5.2.1 Analyzing Sharing-Aware Online VM Paking Performane

Our previous work in VM Paking was foused on the design of online sharing-aware

resoure management algorithms, investigated their run time omplexities and performed ex-

tensive experiments measuring their performane. To extend the work therein, deriving per-

formane bounds for the proposed algorithms using metris suitable for online environments,

e.g., ompetitive and relative worst order ratios, remain open problems in the literature.

Competitive ratios have been studied in the researh literature and have been used

to haraterize the performane of online algorithms in various areas: VM resoure manage-
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ment [3℄ [57℄ [88℄, paket transmission [94℄, ahing [51℄, paging [2℄ [87℄ and in generalized

bin paking settings [19℄ [31℄; yet, to the best of our knowledge, no study has foused on

determining ompetitive ratios for sharing-aware online resoure management algorithms.

While the ompetitive ratio has been used in the researh literature to haraterize

the behavior of online performane against o�ine performane, other metris [12℄, e.g., Max

/ Max ratio [9℄, random order ratio [53℄, et., have evolved whih also gauge performane.

The relative worst order ratio [10℄ establishes a metri for omparing online algorithms di-

retly by measuring the performane of two omparable online algorithms on their respetive

worst ase input sequene. Relative worst order ratios have been studied in the researh lit-

erature and have been used to haraterize the performane of newly developed bin paking

algorithms [10℄ [28℄, applied to the seat reservation [13℄ and paging problems [11℄; yet, to the

best of our knowledge, no study has foused on determining relative worst order ratios for

online resoure management algorithms in a virtual omputing environment. In some ases,

the relative worst order ratio is a better quality of measure for online algorithms than the

ompetitive ratio [28℄.

5.2.2 Sharing-Aware Algorithms for Container Management

Future trends in virtual resoure management must onsider new provisioning teh-

niques as enterprises are operating at unpreedented sales and experimenting with next-

generation tehnologies. While VMs are the dominant medium for mahine instantiation

and operating system hosting in louds, ontainers are making a popular omebak from

their ineption deades ago. Containers are a lightweight alternative to hypervisor-based

virtualization where, unlike hypervisors, ontainers do not have the overhead of abstrat-

ing the PM hardware to virtualize resoures. Instead, ontainers abstrat the operating

system kernel, where the kernel an then be split into multiple, nested ontainers. As a

result, reent studies have shown the e�ieny of utilizing ontainers over standard VM

hypervisor-virtualization [29℄ [68℄ [103℄. Open soure sheduling systems suh as Google's

Kubernetes and Apahe's Brooklyn orhestration framework lead the way for enterprises to
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reveal new and e�ient means of servie virtualization. When institutions suh as Google

manage 2 billion virtual images weekly, the venue for engineering new algorithms at sale

and for next-generation virtual environments while further onserving resoures and meeting

user demand appear to be wide open.

Google's Kubernetes engineering team has ompleted pod [40℄; a dynami ontainer

plaement proedure within a luster inspired by knapsak heuristis. Studying the approx-

imability properties of the knapsak heuristi algorithms through pods is an open opportunity

of researh for both an online and o�ine setting. Furthermore, investigating the online on-

tainer to pod paking on ompute nodes may be studied to address the unique development

of systems for dynami luster management. Lastly, disovering the approximability proper-

ties of bin paking algorithms spei� to ontainers is an open avenue of researh. Given the

urrent industry appeal of ontainers, extentions of our researh to sharing-aware algorithms

in ontainer-based virtualization environments would be a fruitful endeavor.

5.2.3 Sharing-Aware Streaming Resoure Management

We envision an opportunity to extend our sharing-aware algorithms onto systems

whih onsider real-time distributed stream proessing. Real-time distributed stream pro-

essing is inreasingly popular due to responding to events as they our in areas suh as

soial media, real-time analytis, fraud detetion, et. Apahe Storm [90℄ is an example

of a popular open soure real-time distributed stream proessing framework suitable for

these tasks. Therefore, minimizing resoure onsumption therein would be advantageous to

systems whih manage these frameworks. In partiular, sharing memory resoures among

multiple, dupliate data streams would redue overall system memory utilization. This is

espeially useful for appliations onsisting of streams whih have to be pre-alloated with a

spei� amount of memory to ensure proessing onsisteny. Very reently, resoure-aware

sheduling for real-time distributed stream proessing systems have been proposed in the

literature [74℄. Therefore, we believe our researh an be translated to real-time distributed

stream proessing frameworks in order to improve their e�ieny.
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Virtualization tehnologies in loud omputing are ubiquitous throughout data en-

ters around the world where providers onsider operational osts and fast delivery guarantees

for a variety of pro�table servies. These providers should onsistently invoke measures for

inreasing the e�ienies of their virtualized servies in a ompetitive environment where

fast entry to market, tehnology advanement, and servie prie di�erentials separate sus-

taining providers from antiquated ones. Therefore, providers seeking further e�ienies and

revenue generating opportunities should onsider how their resoures are managed in vir-

tual omputing environments whih leverage memory relamation tehniques, spei�ally

page-sharing ; motivating the design of new memory sharing-aware resoure management

algorithms. In this dissertation, we design families of o�ine and online sharing-aware al-

gorithms for resoure management in virtual omputing environments and investigate their

properties within a general sharing model. We evaluate our proposals by applying them to

heterogeneous resoure domains where large, re-engineered trae dataset inputs are developed

in order to ompare our algorithms. Lastly, we outline their appliations to next-generation

virtualization tehnologies and streaming arhitetures.



www.manaraa.com

125

AUTOBIOGRAPHICAL STATEMENT

Safraz Rampersaud reeived his BS degree in mathematis fromWayne State Univer-

sity in 2003. Following graduation, he worked with Detroit Publi Shools as a mathematis

Fellow for the NFS GK-12 program. During this time, he studied for his MS degree in ap-

plied mathematis fousing on optimization as a student under Dr. Mordukhovih at Wayne

State University. Following the ompletion of his MS degree in 2005, he left for Baltimore,

MD to work with Wells Fargo Strutured Produts Group, N.A. as a Seurities Analyst

and later worked as a Senior Operations Analyst with the Federal Home Loan Mortgage

Corporation (Freddie Ma) in MLean, VA.

In Fall 2010, he entered the Ph.D. program in omputer siene at Wayne State Uni-

versity as a student under Dr. Grosu and was seleted to partiipate as an NSF IGERT Fellow

for the Soio-Tehnial Infrastruture for Eletroni Transations (STIET) program. During

this time, he has published eight peer-reviewed papers in venues suh as IEEE CLOUD,

IEEE HPCC, IEEE IC2E, and IEEE ICEBE, has reeived awards for researh (Stephen P.

Hepler Award, Best PhD Symposium Presentation Runner Up Award), teahing (Outstand-

ing Faulty Award, Tau Beta Phi Outstanding Teahing Servie Award), and has had an

artile seleted as the featured artile for the Deember 2014 issue of IEEE Transations

on Parallel and Distributed Systems. His researh interests inlude applied mathematis,

approximation algorithms, distributed systems, e-ommere and virtualization.


	Wayne State University
	1-1-2016
	Sharing-Aware Resource Management Algorithms For Virtual Computing Environments
	Safraz Rampersaud
	Recommended Citation


	Dedication
	Acknowledgements
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Background
	The Dawn of the Hypervisor
	The Practice of Page Sharing
	Foundations of Sharing-Aware Resource Management
	Our Contributions

	Organization

	CHAPTER 2: SINGLE-RESOURCE VM MAXIMIZATION
	Introduction
	Our Contribution
	Related Work
	Organization

	Sharing-Aware VM Maximization
	Greedy Approximation Algorithm (G-SAVMM)
	G-SAVMM Properties
	Experimental Results.
	Experimental Setup
	Analysis of Results

	Summary

	CHAPTER 3: MULTI-RESOURCE VM MAXIMIZATION
	Introduction
	Our Contribution
	Related Work
	Organization

	Multi-Resource Sharing-Aware VM Maximization
	Binary Multilinear Program Formulation
	Greedy Approximation Algorithm (G-MSAVMM)
	G-MSAVMM Properties
	Experimental Results
	Experimental Setup
	Analysis of Results

	Summary

	CHAPTER 4: MULTI-RESOURCE VM PACKING
	Introduction
	Our Contribution
	Related Work
	Organization

	SA-OVMP: Problem
	SA-OVMP: Algorithms
	Next-Fit-Sharing (NFS) Algorithm
	First-Fit-Sharing (FFS) Algorithm
	Best-Fit-Sharing (BFS) Algorithm
	Worst-Fit-Sharing (WFS) Algorithm

	Offline Sharing-Aware VM Packing
	Experimental Results
	Experimental Setup
	Analysis of Results

	Summary

	CHAPTER 5: CONCLUSION
	Summary of Contributions
	Future Research Directions
	Analyzing Sharing-Aware Online VM Packing Performance
	Sharing-Aware Algorithms for Container Management
	Sharing-Aware Streaming Resource Management


	APPENDIX
	REFERENCES
	ABSTRACT
	AUTOBIOGRAPHICAL STATEMENT

