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1

CHAPTER 1: INTRODUCTION

Virtualization, i.e., the pro
ess of abstra
ting a state from a primal resour
e su
h that

multiple instan
es of the abstra
tion may operate within a single environment simultaneously,

has played a dominant role in distributed 
omputing over the past two de
ades. Cloud

servi
e providers, publi
 and private institutions, et
., derive signi�
ant value by extending

the breadth of their virtualization te
hnology in order to optimize the use of their resour
es.

For many of these entities, this dire
tly translates to 
ost savings and/or an in
rease of

revenue. Our inquiry fo
uses on in
reasing the e�
ien
y of resour
e management strategies

within a virtual 
omputing environment by exploiting the potential for sharing resour
es. Our

interpretation of virtual 
omputing environment 
orresponds to any 
omputing environment

where resour
es 
an be virtualized.

Our resear
h fo
uses on virtual memory re
lamation te
hniques, spe
i�
ally page

sharing, and how this pro
ess in�uen
es resour
e management strategies when providers are

bound to allo
ate resour
es in a variety of settings within a virtual 
omputing environment.

From the algorithmi
 perspe
tive, inquiries of this nature have only been investigated through

a single paper, Sindelar et al. [86℄, outside of our own 
ontributions. At a time when 
utting-

edge te
hnologies su
h as �wearable� devi
es and the internet-of-things (IoT) are heavily

dependent on large-s
ale virtualization of servi
es for operability, servi
e providers, now and

in the future, should improve resour
e utilization at every opportunity to support these

innovations at s
ale. Therefore, designing e�
ient resour
e management strategies in virtual


omputing environments is pivotal to a growing industry.

1.1 Ba
kground

In this se
tion, we introdu
e the 
on
epts that will serve as the foundation for this

dissertation. The 
ontents therein are an introdu
tion to virtualization, an explanation of

how page-sharing operates, a motivation for formulating page sharing relationships, and a

review of relevant approximation algorithm 
on
epts and models used throughout our work.
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We then present our 
ontributions whi
h make up the building blo
ks of this dissertation

and 
lose outlining the 
hapters within this dissertation.

1.1.1 The Dawn of the Hypervisor

In 1974, Popek and Goldberg [75℄ proposed su�
ient 
onditions for the e�
ient ex-

ploitation of unused 
omputing resour
es within a 
omputer ar
hite
ture. First-generation


omputers o�ered 
omputing 
apabilities for mostly single tasks and se
ond-generation 
om-

puting extended usability by dedi
ating more spe
ialized instru
tions to the hardware and

allowed users more freedom to design pro
esses and appli
ations through high-level pro-

gramming languages. In the third-generation of 
omputing, internal relo
ation and trap

me
hanisms, time-sharing and operating system multitasking were used to manage 
omput-

ing ma
hine resour
es in order to perform tasks fast without having to utilize all the available

ma
hine resour
es; paving the way for system resour
e redistribution.

Popek and Goldberg envisioned an update to the third-generation 
omputing era

where physi
al ma
hines (PMs) 
ould abstra
t a dupli
ate of themselves and isolate their

pro
esses from other abstra
tions on the same PM e�
iently. Their ideas motivated the

use of a software layer known as the virtual ma
hine monitor (VMM), or hypervisor, whi
h

would support three main fun
tionalities: (i) 
reates a virtual ma
hine environment nearly

identi
al to an environment dire
tly supported by a PM, (ii) instantiation of the abstra
tions

would only su�er minimal performan
e degradation, and (iii) the system resour
es would

be 
ontrolled by the VMM software layer; situated between the abstra
tions and the PM

resour
es from whi
h it is supported. Then, any abstra
tion under the 
ontrol of the VMM

would be known as a virtual ma
hine (VM).

In order for VMs to operate, they must satisfy three main properties: (i) e�
ien
y,

the VM should be able to exe
ute user pro
esses without requiring VMM support outside

of a
quiring resour
es; (ii) resour
e 
ontrol, the VMs may not a

ess or modify the system

resour
es dire
tly; and (iii) equivalen
e, not 
onsidering timing or la
k of resour
es, the VM

exe
ution under a VMM should be near indistinguishable from pro
ess exe
ution natively on
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a PM. In order to 
hara
terize these properties, Popek and Goldberg 
lassi�ed the types of

ma
hine instru
tions used in Instru
tion Set Ar
hite
tures (ISA) into three 
ategories: (a)

privileged, pro
essor instru
tions whi
h perform a trap in user mode and do not perform a

trap if they are in system (kernel) mode; (b) 
ontrol sensitive, pro
essor instru
tions whi
h

attempt to 
hange system resour
e 
on�gurations; and (
) behavior sensitive, pro
essor in-

stru
tions whi
h are dependent on the system resour
e 
on�gurations. Under these 
ategories

of instru
tion types, Popek and Goldberg [75℄ introdu
ed the �rst theorem of virtualization

as follows:

Theorem 1.1.1. For any 
onventional third-generation 
omputer, an e�e
tive VMM may

be 
onstru
ted if the set of sensitive instru
tions for that 
omputer is a subset of the set of

privileged instru
tions.

Theorem 1.1.1 states that if an ar
hite
ture satis�es all properties (i) through (iii)

by 
lassifying pro
essor instru
tions into (a) through (
), and if the VMM sensitive in-

stru
tions are a subset of its privileged instru
tions, then the ar
hite
ture is virtualizable.

Sin
e Theorem 1.1.1 is only a su�
ient 
ondition, ar
hite
tures whi
h do not satisfy the

stated requirements may still be virtualizable either through further modi�
ations, e.g.,

binary-translation, or only be partially virtualizable, e.g., para-virtualization. Popek and

Goldberg's se
ond theorem 
orresponds to re
ursive virtualization, i.e., abstra
ting a VMM

through a VM abstra
tion. Their theorem is as follows:

Theorem 1.1.2. A 
onventional third generation 
omputer is re
ursively virtualizable if it

is: (1) virtualizable, and (2) a VMM without timing dependen
ies 
an be 
onstru
ted for it.

The �rst 
omponent of Theorem 1.1.2 follows from Theorem 1.1.1. The se
ond 
om-

ponent of Theorem 1.1.2 
onstrains the VMM to exe
ute without timing dependen
ies. If

timing dependen
ies exist for the abstra
ted VMM, then this 
ould lower performan
e whi
h

would violate the equivalen
e property.
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1.1.2 The Pra
ti
e of Page Sharing

Page sharing is a memory re
lamation te
hnique whi
h hypervisors use in order to

redu
e memory utilization from among a group of VM tenants residing on the same PM.

The pro
ess, managed by the hypervisor, entails identifying two or more VM tenants whi
h

run similar pro
esses su
h as appli
ations, libraries, and/or operating systems; all 
onsisting

of physi
al blo
ks of memory, where a lower level of granularity for these physi
al blo
ks

of memory are known as pages. If two or more VM tenants exe
ute similar pro
esses on

the same PM, then the hypervisor 
an support the dedupli
ation of identi
al pages for

multiple VM tenants without interrupting their intended pro
esses. When dedupli
ation

o

urs, a single page survives and is used as the referen
e page, or is shared, among VM

tenants exe
uting similar pro
esses. As an example, Figure 1.1 illustrates the end result

of a page being shared among two VM tenants. Both VM tenants ne
essitate six pages of

memory, where the �fth page within VM1's memory blo
k is identi
al to the third page

within VM2's memory blo
k. The hypervisor identi�es this equivalen
e, dedupli
ates the

similar pages among the VM tenants, manages a 
opy of the page within its own blo
k of

memory and provides referen
es from that page to the appropriate lo
ations within the VMs

memory blo
k in lieu of managing multiple, identi
al physi
al memory pages; hen
e, the

pro
ess of page sharing has o

urred. The 
on
ept of memory sharing was introdu
ed in

1972 by Parmelee et al. [73℄. Shortly thereafter, system implementations of memory sharing

features were proposed by Bagley et al. [4℄. Motivated by the authors' desire to develop a


entralized library management database among a group of users, the VMM would not move

physi
al memory from one user to another, but rather 
hanges to the referen
es, addresses

and privileges of the users page table entries would o

ur in order to share the memory

features. The users 
ould then a

ess and modify 
ontent within the database without the

VMM transferring memory from one user to another through managed pointer referen
es to

the data of interest.
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Figure 1.1: Page sharing among two VM tenants.

In the late 1990s, a di�erent motivation lead to a resurgen
e of 
onsidering how re-

sour
es 
an be shared through the VMM. In 1997, resear
h brought forth by Bugnion et

al. [15℄ was motivated by the need to manage large-s
ale, shared-memory multipro
essor

operating system resour
es. From their perspe
tive, operating system software was not de-

veloping as fast as needed to a

ommodate large-s
ale systems for new memory and pro
essor

hardware. A feature of their proposed solution was to modify the hypervisor layer to take

advantage of shared memory among VM tenants in the form of transparent page sharing

(TPS). This te
hnique based page sharing on page 
hara
teristi
s su
h as origin and lo
a-

tion within the hard disk. The VM tenant had opportunities to a

ess the shared pages

but issues would o

ur if the memory pages were modi�ed. As a result, Bugnion et al. [15℄

implemented a system 
omposed of 
opy-on-write disks and operations to allow VM tenants

to share the original pages; yet, for the VM of interest desiring to modify memory through

a shared page, a private 
opy was 
reated by the hypervisor and a

essed stri
tly by the

modifying VM only.

Transparent page sharing lead the way for large systems to minimize their memory

resour
es; yet, in order to operate 
orre
tly, modi�
ations to the VM tenant operating system

would have to o

ur. Re
ognizing this as a potential liability, Waldspurger [98℄ is 
redited
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with the introdu
tion of a new page sharing te
hnique 
alled 
ontent-based page sharing.

In order to implement 
ontent-based page sharing, any hypervisor will routinely perform a

sear
h whi
h s
ans for memory pages among VM tenants whi
h are identi
al. A brute-for
e

sear
h through all VM tenants for determining identi
al pages is expensive with a runtime of

O(n2
), where n is the number of VM tenants. Instead of a brute-for
e method, a hash table

of VM tenant pages is managed by the hypervisor in order to determine identi
al pages in

less time. Early on, page-sharing systems implemented hashing algorithms su
h as Jenkins

hashing fun
tion by Jenkins [45℄, then later implemented a more e�
ient algorithm, Super-

FastHash by Hsieh [44℄, in order to 
apture potential page sharing opportunities within a

hash table.

Typi
ally, hypervisor implementations operate on blo
ks of memory pages in sizes of

either 4 KB or 20 MB. Resear
h has shown that operating on the former size makes �nding

identi
al page blo
ks more di�
ult than in the latter size [5℄. Ea
h memory page, whi
h is

evaluated for sharing, will have a generated hash value asso
iated with it based on its bit


ontent. The page hash value is then 
he
ked against other hash values in a hash table,

where the table entries 
onsist of both the hash value and a page number whi
h identi�es

the original page, managed by the hypervisor, to be shared. If a mat
h is determined, a


omparison between the potential and the original page ensues to determine if they are

bit-wise identi
al. If the bits mat
h exa
tly, a referen
e to the original page is 
reated for

the potential page and the potential page memory is re
laimed. Lastly, the original page is

�agged as read-only and then marked as 
opy-on-write by the hypervisor. A shared page

may be a

essed by VM tenants but not modi�ed expli
itly. In the 
ase a VM tenant requires

a write operation relative to the shared page, the hypervisor generates a private 
opy of the

shared page to be a

essed by the VM tenant and provided with read-write a

ess. Other

VM tenants whi
h share the page will not have a

ess to the private 
opy.
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1.1.3 Foundations of Sharing-Aware Resour
e Management

Our resear
h fo
uses on the design and analysis of sharing-aware resour
e manage-

ment algorithms. The di�eren
es between our proposals and the existing te
hniques are that

existing te
hniques do not fo
us on 
apturing the utility of memory sharing when allo
ating

VM tenants onto PM resour
es and they restri
t the relationship between VM tenants and

their memory pages to a spe
i�
 model when attempting to identify page sharing oppor-

tunities. Therefore, if we 
onsider page-sharing within a variety of more traditional VM

allo
ation problems, the pro
ess be
omes more di�
ult to manage and further modi�
ations

to existing algorithms are required. Considering the example from Figure 1.1, we formalize

a sharing relationship where both V1 and V2 are 
omposed of six pages and an identi
al

page is shared between them. If we aggregate the amount of memory required to host the

VM tenants and in
lude the pages managed by the hypevisor, we 
an derive the following

relationship,

|π(V1) ∪ π(V2)| ≤ |π(V1)|+ |π(V2)|, where

|π(V1) ∪ π(V2)| = 11 & |π(V1)|+ |π(V2)| = 12

(1.1)

and π(Vi) represents the set of memory pages required by VM Vi. The right-hand side of

Equation 1.1 
orresponds to the number of memory pages requested by ea
h VM, while

the left-hand side 
orresponds to pages allo
ated by the me
hanism, that is allo
ating the

shared pages only on
e in memory. While this is a small example, it nonetheless expresses

how, through page sharing, the aggregate number of memory pages whi
h are required to

be managed is less than the total number of requested memory pages by the VM tenants;

re�e
ting a triangle-like inequality on the number of required pages. Moreover, greater insight

into how many pages are required by the hypervisor to host both VMs 
an be obtained by

re-expressing the union of pages between the two VM memory page sets as,

|π(V1)| ∪ |π(V2)| = |π(V1)|+ |π(V2)| − |π(V1 ∩ V2)|, or (1.2)
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∣

∣

∣

∣

∣

2
⋃

j=1

π(Vj)

∣

∣

∣

∣

∣

= |π(V1)|+ |π(V2)| − |π(V1 ∩ V2)|. (1.3)

Naturally, we 
an extend the relationship to the general 
ase for M VM tenants, where the

aggregate memory pages required to host all the tenants by the hypervisor is identi�ed as the

union of all pages requested. Due to the properties of sets, only unique pages will be elements

of the union; whereby, any of these pages are shareable. Similar in form to Equation 1.3, we


an expand the right side for the general 
ase as follows,

∣

∣

∣

∣

∣

M
⋃

j=1

π(Vj)

∣

∣

∣

∣

∣

=

M
∑

j=1

π(Vj)−
∑

j1<j2

π(Vj1 ∩ Vj2) +

· · ·+ (−1)r+1
∑

j1<j2<···<jr

π(Vj1 ∩ Vj2 ∩ · · · ∩ Vjr) +

· · ·+ (−1)M+1π(Vj1 ∩ Vj2 ∩ · · · ∩ VjM ) (1.4)

where

∑

j1<j2<···<jr

π(Vj1 ∩ Vj2 ∩ · · · ∩ Vjr) is taken over all

(

M

r

)

possible subsets of size r

from the set {V1, V2, . . . , VM}. Based on the in
lusion-ex
lusion identity from probability

theory [85℄, Equation 1.4 
an be simpli�ed and re-expressed in set notation form on the

indi
es in the right hand side as follows,

∣

∣

∣

∣

∣

M
⋃

j=1

π(Vj)

∣

∣

∣

∣

∣

=
∑

J∈P(V)

(−1)(|J |+1)

∣

∣

∣

∣

∣

⋂

j∈J

π(Vj)

∣

∣

∣

∣

∣

. (1.5)

The set notation index on J in Equation 1.5 
orresponds to an index from the power set

of the set of VMs, P(V), where |V| = M . The right hand side of Equation 1.5 serves as

a basis to 
hara
terize the general page sharing relationship between M VM tenants and

their subsets in �o�ine� environments. In order to determine the optimal VM allo
ation in

�o�ine� environments while 
onsidering page sharing, optimization programs whi
h exhibit


hara
teristi
s of nonlinearity and non
onvexity 
an be modeled and solved for by 
onsidering

the right hand side of Equation 1.5 as the program's memory 
onstraint shown in Chapters

3 and 4. If enough memory pages 
an be shared and all other resour
es are available, then
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more VMs may be allo
ated to utilize more e�
iently the memory resour
e. Unfortunately,


al
ulating the right hand side of Equation 1.5 to determine the number of pages required

among a set of M VM tenants requires an exponential number of operations, making the


omputation infeasible. Therefore, we have to rely on approximation algorithms whi
h 
an

determine VM allo
ations while 
onsidering page sharing and 
an exe
ute in reasonable time

and generate reasonable results. In the following subse
tions, we review the approximation

algorithms 
on
epts and system models whi
h underpin the design of our sharing-aware

resour
e management algorithms.

The Knapsa
k Problem

We now brie�y des
ribe the 
lassi
 knapsa
k problem and its appli
ation to sharing-

aware resour
e management. The knapsa
k problem [95℄ is a 
lassi
 
ombinatorial optimiza-

tion problem des
ribed as follows:

The Knapsa
k Problem: Given a set S = {a1, . . . , an} of obje
ts, with size(ai),

revenue(ai)∈ Z
+
, and a �knapsa
k 
apa
ity� B ∈ Z

+
, �nd a subset of obje
ts

whose total size is bounded by B and the total revenue is maximized.

Problems of this 
ombinatorial nature are NP-hard [32℄ and have been investigated well

before the turn of the 20th 
entury. In 1957, Dantzig 
oined the term knapsa
k in observation

of 
ertain 
lasses of 
ombinatorial problems whi
h 
ould be modeled as dis
rete-valued, linear

programming problems. The standard 0-1 integer programming version of the knapsa
k

problem 
an be formulated as follows [60℄:

max

n
∑

j=1

pjxj

s.t.

n
∑

j=1

wjxj ≤ c

where xj ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n}

and pj is the revenue of the j
th
item, wj is the size of the j

th
item, c is the knapsa
k 
apa
ity

and xj is a boolean de
ision variable whi
h determines if the jth item should be in
luded
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in the �knapsa
k�, xj = 1, or should not be in
luded, xj = 0. Many variations of the

standard formulation have have been investigated in the resear
h literature when framing

knapsa
k-like problems with spe
i�
 qualities, e.g., fra
tional items, multi-dimensional, non-

linear obje
tives, et
. Heuristi
 solution te
hniques have been formulated early on in order

to solve knapsa
k problems based on dynami
 programming [25℄, greedy algorithms [58℄

and bran
h & bound te
hniques [55℄. A 
omprehensive treatment of knapsa
k variant prob-

lems, approximation algorithms for solving them, and performan
e analyses 
an be found in

Vazirani [95℄, Martello and Toth [60℄, and Kellerer [52℄.

Spe
i�
 to our resear
h, we investigate VM Maximization whi
h des
ribes the problem

of allo
ating VMs onto a single server to maximize the revenue, where the revenue is the

sum of the revenue derived from hosting ea
h individual VM; whi
h in the most general

form, 
an be modeled as the knapsa
k problem. When the sharing of pages among the VMs

is 
onsidered, the problem of VM revenue maximization is no longer dire
tly equivalent to

the knapsa
k problem and existing algorithms will produ
e less than the maximum revenue

due to not allo
ating additional VMs on the extraneous server resour
es. Thus, the VM

Maximization problem is 
onsidered a new variant of the knapsa
k problem in whi
h the

items 
an share spa
e in the knapsa
k.

The Bin-Pa
king Problem

We now brie�y des
ribe the 
lassi
 bin pa
king problem and its appli
ation to sharing-

aware resour
e management. The origins of the bin pa
king problem were inspired by the

knapsa
k problem through appli
ations of the 
utting sto
k, Gilmore and Gomory [34℄, and

job-shop s
heduling, Conway et al. [22℄, problems from the 1960s. Both of these appli
a-

tions previously modeled their problems as knapsa
k variants in order to maximize a spe
i�


obje
tive. When the obje
tive shifts from identifying the sub
olle
tion of items whi
h maxi-

mizes a value, to minimizing the number of �knapsa
ks� required to 
omplete an assignment

of items, the problem is then reformulated into a bin pa
king problem. The bin pa
king [95℄

problem is a 
lassi
 
ombinatorial optimization problem whi
h is des
ribed as follows:
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The Bin Pa
king Problem: Given a bin S of size V and a list of n items with

sizes a1, a1, . . . , an to pa
k, �nd an integer number of bins B and a B-partition

S1
⋃

· · ·
⋃

SB of the set {1, 2, . . . , n} su
h that

∑

i∈Si

ai ≤ V, ∀ k = 1, 2, . . . ,B

and the number of bins is minimized.

The standard 0-1 integer programming version of the bin pa
king problem 
an be

formulated as follows [60℄:

min

n
∑

i=1

yi

s.t.

n
∑

j=1

wjxij ≤ cyi, ∀ i ∈ {1, 2, . . . , n}

s.t.

n
∑

j=1

xij = 1, ∀ i ∈ {1, 2, . . . , n}

where xij ∈ {0, 1}, ∀ i, j ∈ {1, 2, . . . , n}

and yj ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , n}

and c is the 
apa
ity of ea
h bin, wj is the weight of the jth item, yi is a boolean de
ision

variable whi
h determines if the ith bin should be used, yi = 1, or should not be used, yi = 0,

and xij is also a boolean de
ision variable whi
h determines if the jth item should be assigned

to the ith bin, xij = 1, or should not be assigned a

ordingly, xij = 0. Due to 
ombinatorial

nature of assigning items for every 
ombination of bins, the bin pa
king problem is also NP-

hard [32℄. As a result, a suite of heuristi
 algorithms were developed whi
h solve the 
lassi


bin pa
king problem. In 1972, Garey et al. [31℄ designed and analyzed several algorithms

for the bin-pa
king problem; namely, First-Fit, Best-Fit, First-Fit-De
reasing and Best-Fit-

De
reasing. Further resear
h in this domain naturally followed in Johnson [49℄; broadening

the 
lass of heuristi
 algorithms solving the bin pa
king problem in whi
h algorithms belong-

ing to the same 
lass were 
hara
terized by similar worst 
ase behavior. In 1974, a thorough

analysis of the aforementioned works was published by Johnson et al. [48℄ whi
h designed

and analyzed a suite of approximation algorithms for the bin pa
king problem.
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Several variations on the standard formulation have appeared in the literature for

framing bin pa
king problems with spe
i�
 qualities, e.g., bin pa
king with variable sized

bins, bin pa
king with item reje
tion, bin pa
king with item fragmentation, et
. Approxi-

mation algorithms have been studied rigorously over half a 
entury for solving bin pa
king

problems and their variants. A 
omprehensive survey on approximation algorithms for 
lassi


bin pa
king problems is by Co�man et al. [20℄. Approximately three de
ades later, Co�man

et al. [19℄ provided an updated survey of bin-pa
king problems.

Spe
i�
 to our resear
h, we investigate VM Pa
king whi
h des
ribes the assignment of

VM requests onto a minimum number of a
tive servers required to instantiate the requests;

whi
h in the most general form, 
an be modeled as the bin pa
king problem. When the

sharing of pages among the VMs is 
onsidered, the problem of determining the minimum

set of a
tive servers is no longer dire
tly equivalent to the bin pa
king problem and existing

algorithms will a
tivate more servers than ne
essary; resulting in wasted server resour
e

utilization. Thus, the VM Pa
king problem is 
onsidered a new variant of the bin-pa
king

problem in whi
h the items 
an share spa
e in the bins.

Sindelar et al. [86℄ were the �rst to propose and analyze �o�ine� sharing-aware algo-

rithms for the VM Maximization and VM Pa
king problems under hierar
hi
al page sharing

models. Our work in this dissertation di�ers substantially from Sindelar et al. in that we

design algorithms for both online and �o�ine� settings, 
onsider multiple type VM resour
e

requests, assume heterogeneous server 
apa
ities and operate under a general sharing model.

By fo
using on the general sharing model, further memory re
lamation 
an o

ur when

VMs request similar operating systems with di�erent overlapping subsets of appli
ations or

libraries, whi
h are not 
aptured by hierar
hi
al models.

1.1.4 Our Contributions

In this se
tion, we present the summary of our 
ontributions and the outline of our

dissertation. We summarize below the three resear
h proje
ts that we a

omplished as part

of this dissertation.
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• Sharing-Aware Virtual Ma
hine Maximization. Servi
e providers fa
e multiple


hallenges in hosting an in
reasing number of virtual ma
hine (VM) instan
es. Mini-

mizing the utilization of system resour
es while maximizing the potential for revenue

are among the most 
ommon 
hallenges. Re
ent studies have investigated memory

re
lamation te
hniques fo
used on virtual te
hnologies, spe
i�
ally page sharing, for

minimizing the utilization of system resour
es. By in
orporating page sharing into

the 
hallenge of s
heduling VMs on physi
al ma
hines, we formulate the sharing-aware

VM maximization (SAVMM) problem. The SAVMM problem requires determining the

set of VMs that 
an be instantiated on a given server su
h that the revenue derived

from hosting the VMs is maximized when VMs 
onsist of only the memory resour
e.

The SAVMM problem has been shown to be NP-hard. Therefore, we address this


hallenge by developing a greedy algorithm for solving this problem. We determine

the approximation ratio of our greedy algorithm and perform extensive experiments

to investigate its performan
e against other VM allo
ation algorithms. This is the

�rst algorithm proposed in the literature whi
h solves the VM maximization problem

under a general sharing model. A paper des
ribing this resear
h was published in the

Pro
eedings of the 13th IEEE International Symposium on Network Computing and

Appli
ations (NCA'14) [77℄. We present this resear
h in Chapter 2.

• Multi-Resour
e Sharing-Aware Virtual Ma
hine Maximization. Providers

fa
e the 
hallenge of e�
iently managing their infrastru
ture through minimizing re-

sour
e 
onsumption while allo
ating servi
e requests su
h that their revenue is max-

imized. Solutions addressing this 
hallenge should 
onsider the sharing of memory

pages among virtual ma
hines (VMs) and the available 
apa
ity of ea
h type of re-

quested resour
es. We provide su
h solution by designing an approximation algorithm

for solving the multi-resour
e sharing-aware virtual ma
hine maximization (MSAVMM)

problem. The MSAVMM problem requires determining the set of VMs that 
an be in-

stantiated on a given server su
h that the revenue derived from hosting the VMs is
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maximized. In addition, we model the MSAVMM problem as a multilinear binary

program and optimally solve for maximized revenue, while a

ounting for page shar-

ing and multiple resour
e 
onstraints. We determine and analyze the approximability

properties of our proposed greedy algorithm and evaluate it by performing extensive

experiments using Google 
luster workload tra
es. The experimental results show that

under various s
enarios, our proposed algorithm generates higher revenue than other

VM allo
ation algorithms while a
hieving signi�
ant redu
tion of allo
ated memory.

This is the �rst algorithm proposed in the literature whi
h solves the multi-resour
e

VM maximization problem under a general sharing model. A paper des
ribing this

resear
h was published in the Pro
eedings of the 3rd IEEE International Conferen
e

on Cloud Engineering (IC2E'15) [79℄ and an extended version of this paper has been

submitted to IEEE Transa
tions on Computers for publi
ation. We present this work

in detail in Chapter 3.

• Sharing-Aware Online Algorithms for Virtual Ma
hine Pa
king in Cloud

Environments. Cloud servi
e providers o�er on-demand 
omputing resour
es to a

large number of users by employing virtualization te
hnologies. A key 
hallenge fa
ed

by 
loud servi
e providers is to develop e�
ient algorithms for assigning Virtual Ma-


hine (VM) instan
es to server resour
es su
h that the number of required servers whi
h

meet the users' demand is minimized. This 
hallenge has been referred in the literature

as the VM Pa
king problem, a variant of bin pa
king that is NP-hard. The VM Pa
k-

ing problem di�ers from other pa
king problems in that, through virtualization, the

VM instan
es 
ollo
ated on the same server 
an share memory pages whi
h redu
es the

amount of 
loud resour
es required to satisfy users' demand. By fo
using on the oppor-

tunity for 
ollo
ated VMs to virtually share memory through a hypervisor, we design

a family of sharing-aware online algorithms for solving the VM Pa
king problem. We

also introdu
e a new multilinear program whi
h 
aptures the essen
e of sharing mem-

ory and optimally solves the �o�ine� VM Pa
king problem. Lastly, we evaluate our
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sharing-aware online algorithms through extensive experiments and 
ompare them not

only against themselves but also against their sharing-oblivious 
ounterparts. These

algorithms are the �rst algorithms proposed in the literature whi
h solve the multi-

resour
e VM pa
king problem under a general sharing model. The results of this

resear
h were published in Pro
eedings of the 8th IEEE International Conferen
e on

Cloud Computing (CLOUD'15) [80℄ and an extended version of this paper has been

submitted to IEEE Transa
tions on Parallel and Distributed Systems for publi
ation.

We present this work in detail in Chapter 4.

1.2 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present our

resear
h on the design of a new sharing-aware greedy approximation algorithm for the �o�ine�

VM Maximization (SAVMM) problem under a general memory sharing model. In Chapter 3,

we present our resear
h on the design of a new multi-resour
e sharing-aware approximation

algorithm whi
h solves the �o�ine� multi-resour
e VM Maximization (MSAVMM) problem

and introdu
e the optimal multilinear boolean program whi
h models this problem and 
an

be solved for under a general sharing model. In Chapter 4, we present our resear
h on

the design of a family of multi-resour
e sharing-aware online algorithms for the online VM

Pa
king (SA-OVMP) problem and introdu
e the optimal multilinear boolean program whi
h

models this problem and 
an be solved for in an �o�ine� environment under a general sharing

model. In Chapter 5, we des
ribe the possible future dire
tions of our resear
h, and 
on
lude

the dissertation.
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CHAPTER 2: SINGLE-RESOURCE VM MAXIMIZATION

2.1 Introdu
tion

Virtualization, the pro
ess of abstra
ting a software layer whi
h de
ouples the phys-

i
al hardware from the operating system to deliver greater resour
e utililization and �ex-

ibility [97℄, serves as a means to in
rease produ
tivity, lower power 
onsumption, redu
e

hardware installation, and overall, minimize the need for in
reasing the resour
e 
apa
ity to

meet the demand [46℄. The appli
ation of virtualization te
hnologies is ubiquitous in data


enters around the world whi
h must 
onsider operational 
osts and guarantee fast delivery

of a variety of pro�table servi
es. Spe
i�
ally, the servi
e provider must ensure the e�
ien
y

of their virtualized servi
e in a 
ompetitive environment where fast entry to market, te
h-

nology advan
ement, and servi
e pri
ing di�erentials 
an separate sustaining providers from

antiquated ones. Proprietary virtualization platforms, su
h as VMWare's ESX Suite, Mi-


rosoft's Hyper-V and IBM's PowerVM, vary in their methods of operations, e.g., full-, para-

and hardware assisted-virtualization, overhead and available number of guest OS hosting 
a-

pa
ities among other features. Open-sour
e alternatives, e.g., Xen, KVM and Linux-VServer,

o�er 
omparable features and operations to the proprietary platforms while being supported

by a large online 
ommunity. Moreover, open-sour
e virtualization systems su
h as Xen [6℄

have improved the user experien
e by implementing safe resour
e management strategies

without losing performan
e and/or fun
tionality.

Virtualization has undergone a signi�
ant evolution spanning approximately half a


entury. Innovations within virtualization te
hnology were initially fo
used on over
om-

ing the limitations of third-generation 
omputing ar
hite
tures [35℄. Within this 
ontext,

virtualization solved the problem of prote
ting non-privileged referen
es to end users when

multiple end users attempted to a

ess non-privileged instru
tions through a privileged mode

on the base ma
hine [35℄. Invo
ation of a software layer to a

ess the non-privileged instru
-

tions, known at the time as the privileged software nu
leus, su�ered from single a

ess to

the non-privileged referen
es limiting the potential for multiple users. Hen
e, virtualization
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was born out of these limitations and ful�lled the opportunity to repli
ate the privileged and

non-privileged instru
tion sets from the base ma
hine, known as the host, for multiple end

users through a transformed software layer referred to as a hypervisor.

Minimizing resour
e 
onsumption has been a key driver in the overall advan
ement of

virtualization te
hnologies. Memory re
lamation te
hniques su
h as ballooning, hypervisor

swapping, memory 
ompression, and page sharing all attempt to e�
iently utilize virtual

ma
hine (VM) memory [98℄. Page sharing 
reates new 
hallenges in the development of

algorithms whi
h allo
ate VMs onto server resour
es. The problem of allo
ating VMs onto a

single server to maximize the revenue, where the revenue is the sum of the revenues derived

from hosting ea
h individual VM, is equivalent to the knapsa
k problem. The equivalen
e is

made by asso
iating ea
h VM as an obje
t and by quantifying the number of memory pages

required to host ea
h VM as the weight. Therefore, ea
h VM 
an be treated as a distin
t

obje
t having a weight and a utility given by the revenue derived from hosting it. As a result

of this equivalen
e, knapsa
k heuristi
 algorithms 
an be su

essfully applied to solve the

above VM allo
ation problem when page sharing is not 
onsidered. When the sharing of

pages among the VMs is 
onsidered, the problem of VM revenue maximization is no longer

equivalent to the knapsa
k problem. Existing knapsa
k algorithms will produ
e less than the

maximum revenue due to not allo
ating additional VMs on the extraneous server resour
es

whi
h be
omes available when VM pages are shared; resulting in loss of revenue. Therefore,

new algorithms for VM maximization that take into a

ount the sharing of pages among

VMs must be developed.

2.1.1 Our Contribution

We address the problem of sharing-aware VM maximization in a general sharing

model whi
h has as obje
tive �nding a subset of VMs that 
an be hosted by a server with

a given memory 
apa
ity su
h that the total revenue derived from hosting the subset of

VMs is maximized. This problem has been shown to be NP-hard [86℄. Therefore, we

design a greedy approximation algorithm based on a new e�
ien
y metri
 whi
h 
onsiders
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both revenue-seeking and page sharing opportunities in the VM allo
ation pro
ess. We

determine the approximation ratio of our greedy algorithm that solves the sharing-aware

VM maximization problem in the general sharing model, a model that does not assume

any hierar
hi
al or other stru
tured form of sharing. We perform extensive experiments to

evaluate the performan
e of our greedy algorithm against other VM allo
ation algorithms.

2.1.2 Related Work

The sharing-aware VM maximization problem has been introdu
ed by Sindelar et

al. [86℄. Their main 
ontributions lie in the development of hierar
hi
al sharing models

for VM 
olo
ation for both the VM maximization and pa
king problems. They were the

�rst to propose and investigate algorithms for solving the sharing-aware VM maximization

problem. Their resear
h is the 
losest to our resear
h. Our resear
h on the sharing-aware VM

maximization problem fo
uses on the general sharing model whi
h di�ers from the shared

hierar
hi
al models investigated by Sindelar et al. [86℄.

The sharing-aware VM maximation problem has been shown to be NP-hard [86℄.

Thus, solving it optimally is not feasible and we have to resort to approximation algorithms,

more spe
i�
ally greedy algorithms. Greedy algorithms have been extensively investigated

for di�erent 
lassi
al problems su
h as the knapsa
k [52℄, subset-sum, partition [56℄, as well

as, fa
ility lo
ation [91℄. Greedy algorithms for VM provisioning and dynami
 allo
ation in


louds have been investigated by Zaman and Grosu [106℄ [107℄ [108℄, who designed 
ombi-

natorial au
tion-based me
hanisms. Nejad et al. [69℄ designed a family of truthful greedy

heuristi
 me
hanisms for dynami
 VM provisioning. Other resear
h on greedy heuristi
s for

VM provisioning fo
used on minimizing bandwidth-
onstraint VM pla
ement in data 
en-

ters [21℄, minimizing power 
onsumption [92℄, federated 
louds [62℄, and physi
al ma
hine

resour
ing in 
louds by implementing a me
hanism design approa
h [63℄. All these works

fo
used on designing algorithms for provisioning VMs on multiple physi
al ma
hines within

a 
loud 
omputing system, and for allo
ation of VMs to users. Our work fo
uses on devel-

oping algorithms that maximize the revenue derived from hosting VMs on a single physi
al
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ma
hine that 
an be employed in making de
isions at the physi
al ma
hine level and work

in 
onjun
tion with higher level resour
e management algorithms su
h as the ones dis
ussed

above.

Mu
h of the work on page sharing fo
used on system development. Bugnion et al. [15℄

proposed the transparent page sharing te
hnique for minimizing redundan
y and memory

overhead. Commer
ial systems su
h as VMWare's ESX Server [5℄ enable transparent page

sharing in addition to other memory re
lamation te
hniques [98℄. Wood et al. [101℄ proposed

Memory Buddies, a sharing-aware VM memory allo
ation system whi
h uses the VMWare

ESX Server to identify page sharing opportunities. This is a
hieved by employing hashing

algorithms that 
apture the potential for sharing between multiple VMs. The open sour
e

Xen hypervisor [6℄, has in
orporated page sharing in Versions 4.0 and above for Hardware

Virtual Ma
hines (HVM) [76℄. Gupta et al. [41℄ developed the Di�eren
e Engine system

whi
h in
orporates sub-page sharing, i.e., sharing pages that are nearly identi
al, and uses


ompression te
hniques for pages that are not similar, thereby further redu
ing the overall

memory footprint. Our work fo
uses on developing sharing-aware VM allo
ation algorithms

that maximize the revenue obtained from hosting the VMs and take into a

ount page

sharing.

2.1.3 Organization

The rest of the 
hapter is organized as follows. In Se
tion 2.2, we des
ribe the

sharing-aware VM maximization problem. In Se
tion 2.3, we present the design of our

proposed e�
ien
y metri
 and our greedy algorithm for the sharing-aware VM maximization

problem. In Se
tion 2.4, we 
hara
terize the properties of the proposed greedy algorithm.

In Se
tion 2.5, we evaluate our greedy algorithm against other VM allo
ation algorithms

by extensive experiments. In Se
tion 2.6, we summarize our results and present possible

dire
tions for future resear
h.
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2.2 Sharing-Aware VM Maximization

We now introdu
e the SAVMM (Sharing-Aware Virtual Ma
hine Maximization) prob-

lem as it applies to a servi
e provider resour
e environment.

We assume that a servi
e provider maintains a server Ω, and a library Π of all memory

pages required for ea
h servi
e it o�ers. Thus, the provider 
an identify and manage all

memory pages required by a VM. We denote by πi, the i-th memory page under the provider's

management. Library Π is 
omprised of N distin
t pages, i.e., Π =

N
⋃

i=1

{πi}.

Ea
h VM instan
e requires a set of memory pages whi
h virtualizes a servi
e o�ered

by the provider. We denote by Vj , the VM instan
e j, by Λj, the set of indi
es of pages

required by Vj, and by π
j
i , the i-th memory page required by VM Vj. We denote by V,

the set of �o�ine� VM instan
es that are possible 
andidates for allo
ation and hosting on

server Ω. Given this setup, we de�ne the SAVMM problem as follows:

SAVMM problem: Given a set of M �o�ine� VMs V with ea
h VM Vj yielding

a revenue of pj , determine a subset VH ⊂ V of VMs that 
an be allo
ated on

the server, 
onsidering the memory 
apa
ity C of the server and the sharing of

pages within library Π, su
h that the total revenue, P =
∑

j:Vj∈VH

pj , obtained by

the provider is maximized.

The SAVMM problem may appear similar to the standard knapsa
k problem [52℄, but it is

not the same, be
ause the items (VMs) in the SAVMM problem are shared, while the items

in the standard knapsa
k problem are not. Server Ω 
an host all the VMs in V, if all the

VMs in the set share the same pages and the total number of allo
ated pages does not ex
eed

the 
apa
ity C of the server. The notation we use throughout the paper is summarized in

Table 2.1.

2.3 Greedy Approximation Algorithm (G-SAVMM)

In this se
tion, we present the design of our greedy algorithm for solving the SAVMM

problem. The main idea used in the design of our greedy algorithm is to order the 
andidate

VMs a

ording to a metri
 whi
h 
hara
terizes their potential for revenue and page-sharing
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Table 2.1: SAVMM Notation.

Expression Des
ription

Π Set of pages under provider's management.

N Number of memory pages under provider's management.

V Set of �o�ine� VMs.

M Number of �o�ine� VMs.

VH
Subset of VMs maximizing provider's revenue, VH ⊂ V .

Vj Virtual ma
hine j.

πi The i-th memory page under provider's management.

π
j
i The i-th memory page requested by VM Vj .

pj Revenue generated from allo
ating VM Vj .

Λj Set of indi
es of pages requested by VM Vj .

Ω Provider's server resour
e.

C Memory 
apa
ity of server resour
e Ω.
k Iteration number.

Ekj E�
ien
y metri
 of VM Vj at iteration k.

Sk
j Number of pages VM Vj shares with Ω at iteration k.

and then allo
ates them one by one a

ording to the greedy order. The greedy metri
 and

the greedy order is updated after allo
ating ea
h VM. This represents an iteration in the

greedy allo
ation pro
ess and will be denoted by k.

We �rst introdu
e the proposed metri
 we use in our greedy algorithm to establish

the greedy order among the 
andidate VMs. At every iteration k, we order the 
andidate

VMs, Vj ∈ V, a

ording to an e�
ien
y metri
, Ekj , de�ned as follows:

Ekj =
pj

√

Kj − Sk
j + 1

. (2.1)

where j is the index 
orresponding to VM Vj , Kj is the number of pages required by VM Vj

(i.e., Kj = |Λj|), and Sk
j is the number of shared pages between VM Vj and the VMs that

are already allo
ated to the server. The e�
ien
y metri
 Ekj represents the relative value of

allo
ating VM Vj onto Ω by 
onsidering the revenue pj and the potential for sharing pages


hara
terized by Sk
j , where k 
orresponds to the 
urrent greedy iteration. Prior to allo
ating

the �rst VM onto Ω (i.e., at iteration k = 0), the e�
ien
y metri
 for the �o�ine� set V

of VMs is 
al
ulated using S0
j determined relative to the number of shared pages within all

the VMs in V and not relative to the VMs that are allo
ated on the server. On
e a VM
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has been sele
ted and allo
ated (i.e., for all iterations k > 0) then Ekj is 
al
ulated using Sk
j ,

the number of shared pages between VM Vj and the VMs that are already allo
ated onto

the server. As k in
reases and VMs are allo
ated onto Ω, we have Sk
j ≤ Sk+1

j , that is Sk
j

monotoni
ally in
reases with k, for k > 0.

Sin
e Ekj needed to be well de�ned for all possible 
ases, we add 1 to the denomi-

nator. The reason for this is that, if VM Vj shares all its pages with another VM already

allo
ated onto Ω, (i.e., Kj = Sk
j , ∀k), and if we do not 
onsider adding 1 to the denomina-

tor of Ekj =
pj

√

Kj − Sk
j

, then the e�
ien
y metri
 would produ
e an indeterminate value.

We also redu
e the magnitude of the sharing potential in the e�
ien
y metri
 against the

revenue by applying a square root to the denominator. Revenue has the largest e�e
t when


al
ulating the e�
ien
y metri
 and therefore we want to 
apture as mu
h e�e
t as possible,

while still allowing for the in�uen
e of page sharing. Similar metri
s to our e�
ien
y metri


have been experimented with in studies fo
using on the knapsa
k problem [52℄ and have led

to good approximation ratios.

The G-SAVMM algorithm for solving the SAVMM problem are presented in Algo-

rithms 1 and 2. G-SAVMM 
onsists of two phases, exe
uted one after the other: (i) a

pre-pro
essing phase, for k = 0 (Algorithm 1); and, (ii) a greedy allo
ation phase, for k > 0

(Algorithm 2). The input of G-SAVMM is an �o�ine� set of VMs V. G-SAVMM determines

the set VH
of VMs allo
ated onto the server, whi
h is an approximate solution to the SAVMM

problem.

In the pre-pro
essing phase, G-SAVMM s
ans every VM Vj to identify its required

pages, denoted by π
j
i . a
tivePage() (Line 8) is a fun
tion that returns 1, if page π

j
i is

requested, or returns 0 if page π
j
i is not requested. For every a
tive page π

j
i the algorithm

in
rements the variable Kj, the number of pages required by VM Vj , and Ai, the number

of page πi o

urren
es among all VMs in V (Lines 6 through 10). After 
al
ulating A, the

algorithm determines the page from V that has the maximum number of requests whi
h is

identi�ed by index ĩ (Line 11). If a VM requests page πĩ, that VM will be pla
ed in the
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Algorithm 1 G-SAVMM: Phase I

1: Input: Set of �o�ine� VM instan
es (V)
2: {Phase I: Pre-pro
essing}

3: VH ← ∅
4: A← 0

5: ĩ, j̃, k ← 0
6: for i = 1, . . . , N do

7: for j = 1, . . . , |V| do
8: if (a
tivePage(π

j
i )) then

9: Ai = Ai + 1
10: Kj = Kj + 1

11: ĩ = argmax
i

{Ai}
12: for j = 1, . . . , |V| do
13: if (a
tivePage(π

j

ĩ
)) then

14: VH = VH ∪ {Vj}
15: for all j ∈ VH

do

16: for i = 1, . . . , N do

17: if (Ai > 1) & (a
tivePage(π
j
i )) then

18: S0
j = S0

j + 1

19: for all j ∈ VH
do

20: E0j =
pj

√

Kj − S0
j + 1

21: j̃ = argmax
j

{E0j }
22: C = C −Kj̃

23: VH = VH ∩ {Vj̃}
24: V = V \ {Vj̃}
25: for i = 1, . . . , N do

26: if (a
tivePage(π
j̃
i )) then

27: a
tivate(πi)

28: k ← 1

subset VH
(Lines 12 through 14). The algorithm then 
al
ulates S0

j , the number of shared

pages among the VMs in VH
, by identifying the a
tive pages where Ai > 1, implying more

than one VM is requesting memory page i (Lines 15 through 18). The e�
ien
y metri


(Eq. 2.1) is then 
al
ulated for all VMs in subset VH
(Lines 19 and 20). On
e the VM with

the largest e�
ien
y value, denoted by Vj̃ , is identi�ed (Line 21), the server 
apa
ity C is

redu
ed by the number of pages Kj̃ in Vj̃ (Line 22). Following the server 
apa
ity redu
tion,

the subset VH
is modi�ed by eliminating all VMs with the ex
eption of VM Vj̃ (Line 23) and

then VM Vj̃ is removed from V (Line 24). Following the allo
ation of VM Vj̃, every requested

page π
j̃
i is identi�ed, and πi is a
tivated on the server resour
e through a fun
tion we denote

as a
tivate() (Lines 25 through 27). The a
tivate() fun
tion implements the a
tions that need
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Algorithm 2 G-SAVMM: Phase II

1: Output: Subset of VM instan
es maximizing provider revenue (VH)

2: {Phase II: Greedy allo
ation}

3: while (C > 0) & (|V| > 0) do
4: flag ← 1
5: for i = 1, . . . , N do

6: for j = 1, . . . , |V| do
7: if (a
tivePage(π

j
i )) & (a
tivePage(πi)) then

8: Sk
i = Sk

i + 1

9: for j = 1, . . . , |V| do
10: Ekj =

pj
√

Kj − Sk
j + 1

11: j̃ = argmax
j

{Ekj }

12: if C − (Kj̃ − Sk

j̃
) < 0 then

13: flag ← 0
14: V = V \ {Vj̃}
15: if (flag) then

16: VH = VH ∪ {Vj̃}
17: V = V \ {Vj̃}
18: C = C − (Kj̃ − Sk

j̃
)

19: for i = 1, . . . , N do

20: if (a
tivePage(π
j̃
i )) then

21: a
tivate(πi)

22: k = k + 1

23: Ω← VH

24: exit

to be performed in order to make a page a
tive on the server. The implementation of this

fun
tion is platform spe
i�
 and is out of the s
ope of this study. The pre-pro
essing phase

is 
ompleted with an update of the iteration number k to 1 (Line 28).

The greedy allo
ation phase of G-SAVMM, (i.e., Algorithm 2 where iteration k > 0),

is similar to the pre-pro
essing phase (Algorithm 1 where iteration k = 0). At the beginning

of the greedy phase, a test is performed to ensure that server 
apa
ity C is never ex
eeded

and that there is at least one VM in V (Line 3). The di�eren
es between the two phases


onsists on how sharing is 
he
ked. In the �rst phase, the pages in ea
h VM from set VH

are 
he
ked against the pages of all other VMs in VH
(Algorithm 1 Lines 15 through 18),

while in the se
ond phase the pages of ea
h VM from V are 
he
ked against the a
tive pages

on server resour
e Ω (Algorithm 2, Lines 5 through 8). Every time a new VM Vj is inserted

into VH
, a new e�
ien
y value is 
al
ulated (Lines 9 and 10) for every k > 0. A test is then
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performed to re
al
ulate the server 
apa
ity redu
ed by number of pages, Kj , less the shared

pages, Sk
j , in 
ommon with the a
tive pages on the server resour
e Ω.

If, by allo
ating VM Vj onto Ω, the 
apa
ity is ex
eeded, Vj is removed from the

�o�ine� set V with no opportunity for in
lusion in VH
(Lines 13 through 14). Else, VM Vj

is allo
ated, the server 
apa
ity is redu
ed, and both V and VH
are updated a

ordingly

(Lines 15 through 18). Next, pages within the library Π are updated to a
tive, if they have

not been already, relative to VM Vj (Lines 19 through 21) and the iterator k is updated

(Line 22). Lastly, upon exiting the while loop, server Ω is allo
ated the subset VH
of VMs

whi
h represents the solution to the SAVMM problem (Line 23).

In the following, we present an example to show how G-SAVMM works. We 
onsider a

server with memory 
apa
ity C = 10 pages. There are twelve distin
t pages in the library Π

and four VM 
andidates for allo
ation onto the server. Figure 2.1 along with Table 2.2 show

the details of ea
h iteration k of G-SAVMM. The �rst 
olumn in both Figure 2.1 and Table 2.2


orresponds to the pre-pro
essing phase, where a s
an o

urs for identi
al, requested pages

within the set of VMs V. In Figure 2.1, page πj
i , (i = 1, . . . , 12 and j = 1, . . . , 4), is identi�ed

by a blo
k labeled by 1, if it is requested, and by 0, otherwise. The aggregate value of blo
ks

per VM 
orresponds to the total number of requested pages Kj . The highlighted blo
ks in

Figure 2.1, 
orrespond to identi
al pages found between the set of VMs, where Ai > 1. The

maximum value in A 
orresponds to the page that is shared the most among all the pages

in V. The e�
ien
y metri
 value is 
al
ulated for those VMs sharing this most shared page

(i.e., the page with the greatest Ai). Based on the values given in Table 2.2, the highest

e�
ien
y metri
, 4.772, is asso
iated with V4, and V4 is sele
ted for allo
ation to subset VH
.

The next iteration of G-SAVMM, 
orresponding to the �rst iteration of the greedy

phase, is illustrated in the se
ond 
olumn of both Figure 2.1 and Table 2.2. In this iteration, a

s
an o

urs for identi
al, requested pages between VMs and the a
tive pages within library Π.

On
e the initial VM has been sele
ted for allo
ation based on the e�
ien
y metri
, the

provider a
tivates all pages within Π requested by the sele
ted VM. The a
tive pages are
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k = 0 k = 1 k = 2 k = 3

pj Kj S0
j E0j pj Kj S1

j E1j pj Kj S2
j E2j pj Kj S3

j E3j
V1 − − − − 6.00 3 0 3.000 6.00 3 1 3.464 6.00 3 1 3.464

V2 6.50 5 3 3.753 6.50 5 2 3.250 − − − − − − − −
V3 7.00 5 2 3.500 7.00 5 1 3.131 7.00 5 2 3.500 − − − −
V4 6.75 3 2 4.772 − − − − − − − − − − − −

Table 2.2: E�
ien
y Metri
 Cal
ulation Example.

0 0 1 0 0 0 0 0 0 0 1 1V1

0 1 1 0 0 0 1 1 1 0 0 0V2

0 0 0 0 1 1 1 0 1 1 0 0V3

1 0 0 0 0 0 1 1 0 0 0 0V4

k = 0

0 0 1 0 0 0 0 0 0 0 1 1V1

0 1 1 0 0 0 1 1 1 0 0 0V2

0 0 0 0 1 1 1 0 1 1 0 0V3

k = 1

1 0 0 0 0 0 1 1 0 0 0 0V4

0 0 1 0 0 0 0 0 0 0 1 1V1

0 1 1 0 0 0 1 1 1 0 0 0V2

0 0 0 0 1 1 1 0 1 1 0 0V3

k = 2

1 0 0 0 0 0 1 1 0 0 0 0V4

0 0 1 0 0 0 0 0 0 0 1 1V1

0 0 0 0 1 1 1 0 1 1 0 0V3

k = 3

0 1 1 0 0 0 1 1 1 0 0 0V2

1 0 0 0 0 0 1 1 0 0 0 0V4

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10π11π12 π12π11π10π9π8π7π6π5π4π3π2π1 π1 π2 π3 π4 π5 π6 π7 π8 π9 π10π11π12 π1 π2 π3 π4 π5 π6 π7 π8 π9 π10π11π12

Π Π Π Π

1 1 2 0 1 1 3 2 2 1 1 1A

VH

Figure 2.1: G-SAVMM: Exe
ution Example.

identi�ed by blo
ks with diagonal line �lling underneath ea
h page πi from Π. The a
tive

pages 
orrespond to all pages from V4. The highlighted blo
ks for VMs in iteration k = 1,


orrespond to those pages that are identi
al to the a
tive pages in Π. Even though V1

does not share any a
tive pages with the a
tive pages in Π at k = 1, the e�
ien
y metri


is 
al
ulated and V1 may be 
onsidered a 
andidate for allo
ation sin
e at some k > 1,

there may be a
tive pages that are identi
al to pages in V1 in later allo
ations. The largest

e�
ien
y value is 3.250, whi
h 
orresponds to V2, and the new server 
apa
ity is 6. VM V2


onsists of six pages, where three of them are shared with the a
tive pages in Π and therefore

do not have to be a

ounted for against the 
apa
ity. G-SAVMM pro
eeds until k = 3, where

the remaining 
apa
ity is 1. The total revenue obtained by G-SAVMM is 20.25.

2.4 G-SAVMM Properties

In this se
tion, we determine the approximation ratio of G-SAVMM and 
hara
terize

its 
omputational 
omplexity. To develop insight into the properties of G-SAVMM, we design

and analyze a worst-
ase VM instan
e as follows. Let VW
denote an instan
e of the SAVMM

problem where VM Vĵ does not share any memory pages with the other VMs in VW
. Then,
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let at least one VM Vĵc ∈ VW
be 
omprised of pages whi
h are a 
omplement set of pages

to VM Vĵ . In addition, let the remaining VMs in VW
be 
omprised of either a subset of

pages in VM Vĵc or be equivalent to VM Vĵc . In either 
ase, the remaining VMs would be

allo
ated onto Ω if Vĵc were to be allo
ated �rst sin
e they all share the same memory pages

and would not redu
e 
apa
ity.

We investigate this instan
e on a server Ω with 
apa
ity C su
h that either VM

Vĵ or VM Vĵc 
an be allo
ated, but not both. If VM Vĵc is allo
ated, then all remaining

VMs in VW \ {Vĵ}, will be allo
ated as well due to page sharing. Else, VM Vĵ is allo
ated

and utilizes the server resour
e 
apa
ity enough to not allow any other VM to be allo
ated

from VW
. Our last 
onsideration of the problem instan
e VW


orresponds to revenue. G-

SAVMM is inherently sensitive to revenue values when 
al
ulating the e�
ien
y metri
. In

the following theorem, we determine the approximation ratio for G-SAVMM based on the

worst 
ase instan
e VW
.

Theorem 2.4.1. The approximation ratio of G-SAVMM is M , where M is the number of

VMs.

Proof. Let the revenue obtained from an optimal solution be denoted as P ∗
. Then, let the

optimal set of VMs whi
h generate P ∗
from VW

be denoted by VW
OPT , where P

∗ =
∑

j:Vj∈VW
OPT

pj .

Let the revenue obtained by G-SAVMM be denoted by P , and the set of VMs whi
h generate

revenue P from VW
be denoted by VW

GRD, VW
GRD ⊂ VW

, where P =
∑

j:Vj∈VW
GRD

pj . At k = 0,

allo
ate VM Vĵ onto Ω; admitting E0j < E0
ĵ
. Then, by Equation 2.1,

pj
√

Kj − S0
j + 1

<

pĵ
√

Kĵ − S0
ĵ
+ 1

. Sin
e VM Vĵ does not share pages with VMs in VW
, S0

ĵ
= 0, resulting in

pj
√

Kj − S0
j + 1

<
pĵ

√

Kĵ + 1
, where

√

Kĵ + 1
√

Kj − S0
j + 1

pj < pĵ (2.2)
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establishes the lower bound for pĵ sele
ted a

ording to our e�
ien
y metri
 at k = 0. This

implies that for any pĵ greater than the established lower bound, VM Vĵ will be allo
ated

�rst onto Ω from VW
by G-SAVMM. Considering the server utilization of Vĵ and 
apa
ity C,

no other VM allo
ations 
an be performed and k stops at 0. Sin
e P =
∑

j:Vj∈VW
GRD

pj , the

aggregate revenue is expressed as P = pĵ .

Suppose that through an exhaustive sear
h, the optimal value P ∗
, is 
al
ulated

whereby VM Vĵc is allo
ated �rst onto Ω at k = 0. Sin
e every remaining VM in VW
is


omprised of a subset of pages in VM Vĵc, not in
luding VM Vĵ, then the exhaustive sear
h

allo
ates all remaining VMs onto Ω from k = 1 to at most k = M − 1. Thus, the optimal

revenue expressed as P ∗ =
∑

j:Vj∈VW
OPT

pj implies P ∗ =
∑

j:Vj∈VW \{V
ĵ
}

pj. In order to determine

the approximation ratio for this instan
e of SAVMM, we must show that P ∗ ≤ Pα, where α

is the multipli
ative fa
tor that will give the approximation ratio of G-SAVMM. Therefore,

P ∗

P
=

∑

j:Vj∈VW
OPT

pj
∑

j:Vj∈VW
GRD

pj
(2.3)

=

∑

j:Vj∈VW \{V
ĵ
} pj

pĵ
(2.4)

By substituting pj from Eq. 2.2, we further determine

P ∗

P
<

∑

j:Vj∈VW \{V
ĵ
}

√
Kj−Sk

j +1√
K

ĵ
+1

pĵ

pĵ
(2.5)

=
∑

j:Vj∈VW \{V
ĵ
}

√

Kj − Sk
j + 1

√

Kĵ + 1
(2.6)

=
1

√

Kĵ + 1

∑

j:Vj∈VW \{V
ĵ
}

√

Kj − Sk
j + 1 (2.7)

For k > 0 and ∀ VM Vj ∈ VW \ {Vĵ}, Sk
j will be at least 1 when VM Vĵc is allo
ated

�rst onto Ω. Every remaining VM in VW \{Vĵ}, will be allo
ated onto Ω, where the remaining
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VMs may only 
onsist of a single shared page with Vĵc in the worst 
ase. Then,

P ∗

P
≤ 1

√

Kĵ + 1

∑

j:Vj∈VW \{V
ĵ
}

√

Kj − 1 + 1 (2.8)

=
1

√

Kĵ + 1

∑

j:Vj∈VW \{V
ĵ
}

√

Kj (2.9)

Following the allo
ation of VM Vĵc , we 
onsider M − 1 maximum number of VMs

left to allo
ate in the optimal solution. Sin
e VM Vĵc exists and is the 
omplement page set

to Vĵ , then for N pages, 1 ≤ Kĵ ≤ N − 1. In addition, sin
e there exists at least 1 shared

page index between Λj and Λĵc ∀j : Vj ∈ VW \ {Vĵ}, then for Kj = 1 we have

P ∗

P
≤ (M − 1)

√
1

√

Kĵ + 1
=

M − 1√
2
≤M − 1 < M (2.10)

Therefore,

P ∗

P
is bounded by α = M , whi
h results in an approximation ratio of M

for the G-SAVMM algorithm.

We now investigate the time 
omplexity of G-SAVMM. The running time is dominated

by the se
ond phase, the greedy phase. The while-loop (Algorithm 2 Line 3) may exe
ute

a maximum of M − 1 iterations sin
e one VM has already been inserted into VH
. Within

the while-loop, the running time is dominated by the sear
h and 
al
ulation of shared pages

between the VMs in V and the a
tive pages on Ω (Algorithm 2 Lines 5 through 8). The

sear
h and 
al
ulation are exe
uted a maximum ofM−1 times, 
orresponding to the possible

number of VMs at k = 1, by the number of a
tive pages to sear
h on Ω, thus the running

time is O(N(M − 1)). Then, the running time for the entire greedy phase is O(N(M − 1)2).

Thus, G-SAVMM has an asymptoti
 running time of O(NM2) whi
h is linear in the total

number of pages and quadrati
 in the total number of VMs in the set of �o�ine� VMs.

2.5 Experimental Results.

In this se
tion, we perform extensive experiments investigating the performan
e of

G-SAVMM against other VM allo
ation algorithms 
onsidering their obtained revenue and

the utilization of the server's memory.
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2.5.1 Experimental Setup

We perform our experiments on a 2.4 GHz Intel Core

R©
i7-3630 QM CPU 64-bit

system. All simulations are implemented in C++ and are 
ompiled with GCC Version 4.9.0.

Our evaluation of G-SAVMM 
onsists of 
omparing its performan
e against two other VM

allo
ation algorithms: (i) Highest Revenue (HR-Oblivious); and, (ii) Maximum Shared Pages

(MS-Sharing). The �rst allo
ation algorithm, HR-Oblivious, is a greedy algorithm whi
h

allo
ates VMs in de
reasing order of their revenue and is page sharing oblivious. The se
ond

allo
ation algorithm, MS-Sharing, is a greedy algorithm whi
h allo
ates VMs in de
reasing

order of their number of shared pages. The page sharing 
onsideration in MS-Sharing mirrors

that of G-SAVMM, but it does not take into a

ount the revenue.

Our environment assumes page sharing within ea
h simulation we evaluate. We 
on-

sider the degree of sharing among the VMs and 
ategorize the SAVMM instan
es into four


ategories, 
alled sharing strati�
ations: (i) Low-Share (no greater than 20% of the a
tive

pages on the server are shared with VMs); (ii) Mid-Share (no greater than 50% of the a
tive

pages on the server are shared with VMs); (iii) High-Share (no greater than 80% of the

a
tive pages on the server are shared with VMs); and, (iv) Full-Share (approx. all a
tive

pages on the server are shared with VMs). Our experiments 
onsist of 1000 simulations per

sharing strati�
ation. In our simulations, ea
h sharing strati�
ation is de�ned within the

following ranges: (i) 15%−20% for Low-Share; (ii) 38%−50% for Mid-Share; (iii) 70%−80%

for High-Share; and, (iv) 92%−99% for Full-Share.

Ea
h instan
e of SAVMM 
onsidered in the simulation 
onsists of 10 VMs. Ea
h

VM is assigned a revenue value randomly ranging from $1 to $20. The number of pages

is also generated randomly with a maximum of 1000 pages possible per VM. Our server


apa
ity C is �xed at 60% of the total number of pages for ea
h simulation. Based on our

experiments, operating at 60% 
apa
ity provides enough resour
es to a

ommodate a wide

variety of simulations.
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Our 
riterion for identifying the best performing algorithm is based on the 
al
ulation

of revenue ratios. In our experiments, we exe
ute the three greedy algorithms HR-Oblivious,

MS-Sharing and G-SAVMM on instan
es of the SAVMM problem. The set of VMs therein

will vary in their revenue generated from being hosted a

ording to the range spe
i�ed in the

previous paragraph. Comparing then aggregating the a
tual values of the revenue generated

by ea
h of these greedy algorithms over a number of simulations is arti�
ial sin
e it may

mislead the attainment of a de�ned value of revenue. Instead, we 
ompare the revenues

generated by ea
h greedy algorithm over the maximum revenue generated in that instan
e

and aggregate those ratios for a spe
i�
 number of simulations. For example, suppose after

simulating an instan
e of the SAVMM problem, HR-Oblivious generates a revenue value of

100, MS-Shaing generates a revenue value of 200 and G-SAVMM generates a revenue value of

250. Then, the maximum revenue generated in that instan
e would be 250. The 
al
ulated

revenue ratios would be .4, or

100

250
, for HR-Oblivious, .8, or

200

250
, for MS-Sharing and 1,

or

250

250
, for G-SAVMM. The revenue ratios indi
ate ea
h greedy algorithm's proximity to

the maximum revenue attained in that instan
e. These revenue ratios will never be larger

than 1 for any of the algorithms in any instan
e. By aggregating these ratios over 1000

simulations, we identify the best performing algorithm as the one with the highest revenue

ratio aggregate. The revenue ratio aggregate for ea
h algorithm over the 
ourse of 1000

simulations will never be larger than 1000. In addition, these 1000 simulations are performed

for ea
h sharing strati�
ation to determine the best performing algorithm under the various

sharing s
enarios.

2.5.2 Analysis of Results

We now 
ompare the performan
e of G-SAVMM against both HR-Oblivious and MS-

Sharing algorithms. In Figure 2.2, we plot the aggregate revenue ratios of all three algorithms

under di�erent sharing strati�
ations. For sharing strati�
ations Low-Share, Mid-Share and

High-Share, G-SAVMM outperforms both HR-Oblivious and MS-Sharing algorithms. In Low-

Share, G-SAVMM resulted in either the revenue maximum over or equal to the revenues
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Figure 2.2: G-SAVMM: Revenue Ratios vs. Sharing Strati�
ations.

obtained using HR-Oblivious and MS-Sharing, in 852 of the 1000 simulations. In Mid-Share,

G-SAVMM resulted in either the revenue maximum over or equal to the revenues obtained

using HR-Oblivious and MS-Sharing in 875 of the 1000 simulations. In High-Share, G-SAVMM

resulted in either the revenue maximum over or equal to the revenues obtained using HR-

Oblivious and MS-Sharing in 816 of the 1000 simulations. In the Low-Share and Mid-Share

strati�
ations, our experiments have shown that HR-Oblivious outperforms MS-Sharing. In

the High-Share and Full-Share strati�
ations, our experiments have shown that MS-Sharing

outperforms HR-Oblivious. As the sharing potential in the strati�
ation in
reases, MS-Sharing

generates an in
reased revenue sin
e more VMs may be allo
ated. In the Full-Share strati-

�
ation, G-SAVMM and MS-Sharing generate the same revenue resulting in a revenue max-

imum in 1000 out of 1000 simulations. Based on our results, G-SAVMM attains a revenue

ratio aggregate of: (i) 993.2759 for Low-Share; (ii) 994.0514 for Mid-Share; (iii) 992.9242
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Figure 2.3: G-SAVMM: Capa
ity Ratios vs. Sharing Strati�
ations.

for High-Share; and, (iv) 1000 for Full-Share. When a simulation 
ontains VMs with full-

sharing potential, G-SAVMM or MS-Sharing returns the same result. When the simulated

instan
e 
onsists of VMs with less opportunity to share pages, G-SAVMM is the preferred

algorithm with respe
t to revenue maximization. Therefore, a

ording to our experiments,

G-SAVMM should be the 
hosen algorithm for solving SAVMM. In Figure 2.3, we plot the

aggregate remaining memory 
apa
ity ratios, after the VMs have been allo
ated, for all three

algorithms under di�erent sharing strati�
ations. We have shown the e�
a
y of G-SAVMM

for revenue maximization now we show that from the point of view of preserving resour
es,

G-SAVMM also performs well. The remaining 
apa
ities are slightly larger for HR-Oblivious

in the Low-Share and are larger for MS-Sharing in Mid-Share and High-Share. The signi�-


ant di�eren
es between these algorithms o

ur in the Full-Share strati�
ation. MS-Sharing

dominates the amount of unused 
apa
ity with G-SAVMM also experien
ing a higher unused
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apa
ity; albeit not as signi�
ant as MS-Sharing, yet well above HR-Oblivious. Therefore,


hoosing G-SAVMM as the algorithm for solving SAVMM leads to a 
onsiderable saving of

memory whi
h 
an be utilized for other purposes.

2.6 Summary

We designed a sharing-aware greedy approximation algorithm (G-SAVMM) for solv-

ing the sharing-aware VM maximization problem. We showed that G-SAVMM is a M-

approximation algorithm, whereM is the number of VM instan
es. The experimental results

show that G-SAVMM outperforms two other VM allo
ation algorithms in terms of generated

revenue.
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CHAPTER 3: MULTI-RESOURCE VM MAXIMIZATION

3.1 Introdu
tion

Virtualization embodies all the positive 
hara
teristi
s of a te
hnology that minimizes

administrative e�ort, energy 
onsumption, and infrastru
ture investment. The pro
ess of vir-

tualizing appli
ations, servers, networks, et
., as a servi
e bene�ts 
onsumers and providers

alike. Consumers enjoy the ful�llment of their requests and are prote
ted, in a sense, by Ser-

vi
e Level Agreements (SLAs) that de�ne Quality of Servi
e (QoS) guarantees. Providers,

on the other hand, must ensure that essential resour
es are thoroughly available and that

they generate the highest revenue from providing the servi
es.

Cloud servi
e providers fa
e many 
hallenges 
on
erning the availability of resour
es

to host user spe
i�ed servi
es. One of the major 
hallenges is how to allo
ate and manage

resour
es in large s
ale systems su
h that the revenue is maximized and the user requests

are satis�ed. To meet these 
hallenges, several platforms and systems have been developed

and presented in the resear
h literature. An example of su
h a platform is Mesos [43℄,

whi
h allows sharing of 
luster resour
es among various 
luster 
omputing frameworks. A

more re
ent example is Borg [96℄, Google's large s
ale 
luster management system, whi
h

s
hedules requests on what may well be the largest servi
e infrastru
ture in the world [67℄.

While these systems represent signi�
ant 
ontributions to resour
e management in large s
ale

systems, both works identify extensions in sear
h of greater e�
ien
y, that is, leveraging

more information about resour
e o�erings in the 
ase of Mesos and in the 
ase of Google's

next-generation 
ontainer management system, Kubernetes [39℄.

Resour
e-based sharing, whi
h lies at the heart of virtualization, is a way for servi
e

providers to alleviate s
ar
ity, improve utilization and make available an enormous amount

of servi
es to users. In this 
hapter, we fo
us our attention on exploiting the bene�ts of

sharing memory pages among 
o-lo
ated VMs. Sharing at the level of memory pages, page

sharing, is a standard memory re
lamation te
hnique where the hypervisor removes iden-

ti
al memory pages between the 
o-lo
ated VMs and manages a single page to be shared
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between them. Hypervisors use an assortment of memory re
lamation te
hniques, e.g., bal-

looning, 
ompression, swapping, et
., to 
onserve the memory resour
e and implement them

in di�erent ways. For instan
e, the Xen hypervisor [6℄ manages the sharing of pages at the

appli
ation level, whereas IBM's PowerVM [23℄ manages page sharing at the logi
al partition

level. If servi
e providers 
an adapt their pri
ing for servi
es on the utilization and sharing

of resour
es, then the potential for higher revenues 
ould be in
reased due to attra
ting more


onsumers to portions of resour
es whi
h have been freed by sharing.

In this 
hapter, we address the multi-resour
e sharing-aware virtual ma
hine maxi-

mization (MSAVMM) problem. The MSAVMM problem requires determining the set of VMs

that 
an be instantiated on a given server su
h that the revenue derived from hosting the

VMs is maximized. The solution to this problem takes into a

ount the sharing of memory

pages among the VMs and the available 
apa
ity of ea
h type of resour
e requested by the

VMs. If memory sharing is not 
onsidered, a 
loud provider 
ould employ 
lassi
al multidi-

mensional knapsa
k algorithms (with the knapsa
k as the server and the items as the VMs)

to solve the virtual ma
hine maximization problem. The 
lassi
al knapsa
k algorithms [52℄

assume that items are distin
t and are 
hara
terized by dimension and weight. When the

items are treated as non-distin
t and 
an be shared, as is the 
ase for MSAVMM, the 
lassi


knapsa
k algorithms produ
e allo
ations whi
h generate less revenue than spe
ially designed

sharing-aware algorithms. Our fo
us is on designing su
h sharing-aware algorithms that

solve MSAVMM.

3.1.1 Our Contribution

We formulateMSAVMM as a multilinear binary program and optimally solve for max-

imized revenue in the 
ase of small instan
es. Sin
e solving the multilinear program is not

feasible for large s
ale instan
es of MSAVMM, we propose and design a greedy approximation

algorithm for solving MSAVMM. The algorithm allo
ates a set of requested VM instan
es to

the server resour
e su
h that the revenue of the provider is maximized while the sharing of

memory pages and the 
onstraints on the 
apa
ity of ea
h type of resour
e are taken into
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a

ount. The greedy order employed by the algorithm is based on an e�
ien
y metri
 that


onsiders multiple types of resour
es and the page sharing potential among the VMs. We

analyze the properties of our proposed greedy algorithm and determine its approximation

ratio. Lastly, we investigate the performan
e of our proposed algorithm by 
omparing it with

the performan
e of several other greedy allo
ation algorithms on Google 
luster workload

tra
es [83℄. To the best of our knowledge, no multi-resour
e sharing-aware greedy approx-

imation algorithms for solving the MSAVMM problem have been proposed in the resear
h

literature to date.

3.1.2 Related Work

Previous resear
h on the VM resour
e allo
ation problem has fo
used on the opti-

mization of various utility fun
tions under multiple VM resour
e 
onstraints and on the

design of in
entive-based me
hanisms for VM allo
ation. Wei et al. [100℄ investigated phys-

i
al ma
hine (PM) provisioning for Infrastru
ture as a Servi
e (IaaS) 
louds and argued

that servi
e providers should o�er �exible resour
e 
ombinations when hosting VMs. Their

resear
h also suggested that the use of a single resour
e-type provisioning s
heme by 
loud

providers when multiple resour
e types are requested, leads to PM over-provisioning and

limits resour
e utilization. Therefore, the authors have developed a dynami
 multiple re-

sour
e provisioning approa
h whi
h optimizes resour
e utilization for IaaS 
loud providers.

Minarolli and Freisleben [66℄ investigated the allo
ation of VMs requesting multiple resour
e

types in IaaS 
louds. Their proposal employs a utility fun
tion whi
h maximizes the qual-

ity of servi
e (QoS) and the servi
e provider's revenue through resour
e managers running

on PMs. The use of au
tion-based me
hanisms for the VM allo
ation problem 
onsidering

multiple resour
e types has been investigated by several resear
hers. Zaman and Grosu [107℄

designed 
ombinatorial au
tion-based greedy me
hanisms for VM provisioning and allo
ation

in 
louds. Nejad et al. [70℄ proposed a family of truthful greedy heuristi
 me
hanisms for

dynami
 VM provisioning for the au
tion-based model. Mashayekhy et al. [64℄ formulated

a PTAS me
hanism for the provisioning and allo
ation of heterogeneous 
loud resour
es.
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While these allo
ation methods do take multiple resour
es into 
onsideration, they do not

take into a

ount the bene�ts of page sharing in their design and implementation.

Dominant Resour
e Fairness (DRF) has re
eived signi�
ant attention in establishing

fair resour
e allo
ation when multiple resour
es are requested. Ghodsi et al. [33℄ were the

�rst to propose the Dominant Resour
e Fairness (DRF) allo
ation poli
y for multiple types of

resour
es in 
lusters. DRF poli
y satis�es a number of desired properties in
luding strategy-

proofness, envy-freeness, and Pareto-e�
ien
y. It also in
entivizes the sharing of resour
es

by guaranteeing that no request is better o� if the resour
es are equally partitioned among

the set of users' requests. Dolev et al. [27℄ 
onsidered an alternative fairness 
riterion for

allo
ation of multiple resour
es and proved that fairness is guaranteed by any 
ombination

of user requests under multiple bottlene
ks. Wang et al. [99℄ extended the DRF poli
y


on
ept to multiple heterogeneous server resour
es in a 
loud environment. Wong et al. [47℄

investigated the fairness-e�
ien
y trade-o� of allo
ating multiple resour
es in data-
enters.

Even though the above works 
onsidered multiple resour
e types, they did not 
onsider page

sharing when de
iding the allo
ation.

The majority of resear
h on page sharing fo
used on developing page sharing sys-

tems. Bugnion et al. [15℄ proposed the transparent page sharing te
hnique for minimizing

redundan
y and memory overhead. Wood et al. [101℄ proposed Memory Buddies, a sharing-

aware VM memory allo
ation system whi
h uses the VMWare ESX Server to identify page

sharing opportunities. This is a
hieved by employing hashing algorithms that 
apture the

potential for sharing between multiple VMs. Commer
ial systems su
h as VMWare's ESX

Server [5℄ enable transparent page sharing in addition to other memory re
lamation te
h-

niques [98℄. The open sour
e Xen hypervisor [6℄, has in
orporated page sharing in Versions

4.0 and above for Hardware Virtual Ma
hines (HVM) [76℄. Gupta et al. [41℄ developed the

Di�eren
e Engine system whi
h in
orporates sub-page sharing, i.e., sharing pages that are

nearly identi
al, and uses 
ompression te
hniques for pages that are not similar, thereby

further redu
ing the overall memory footprint. Pan et al. [71℄ proposed the use of a memory
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de-dupli
ation engine in 
oordination with a hypervisor to promote the sharing of memory

among the 
o-lo
ated VMs. Our work fo
uses on developing sharing-aware VM allo
ation

algorithms that maximize the revenue obtained from hosting the VMs and take into a

ount

page sharing.

To the best of our knowledge, the existing resear
h on the design and analysis of

sharing-aware VM allo
ation algorithms 
onsists of only one paper by Sindelar et al. [86℄,

who introdu
ed and investigated VM pa
king and maximization problems under hierar
hi-


al sharing models. They developed several algorithms to solve these problems assuming

hierar
hi
al sharing models. Our resear
h on the sharing-aware VM maximization problem

fo
uses on the general sharing model whi
h di�ers from Sindelar et al. [86℄. By fo
using on

the general sharing model, further memory re
lamation 
an o

ur when VMs request similar

operating systems with di�erent overlapping subsets of appli
ations or libraries, whi
h are

not 
aptured by hierar
hi
al models. In Chapter 2 and our previous paper [78℄, we developed

a greedy algorithm for solving the sharing-aware VM maximization problem where only one

type of resour
e, the memory, is 
onsidered. Moreover, both 
ontributions [86℄ and [78℄ do

not 
onsider the allo
ation of multiple types of resour
es.

3.1.3 Organization

The rest of this 
hapter is organized as follows. In Se
tion 3.2, we de�ne the multi-

resour
e sharing-aware VM maximization problem. In Se
tion 3.3, we formulate MSAVMM

problem as a binary multilinear program. In Se
tion 3.4, we present our proposed greedy

algorithm for solving the MSAVMM problem. In Se
tion 3.5, we determine the approxima-

tion ratio of our proposed greedy algorithm. In Se
tion 3.6, we des
ribe the experimental

setup and investigate the performan
e of our proposed algorithm by performing extensive

experiments on Google Cluster Usage tra
e data [83℄. In Se
tion 3.7, we summarize our

results and present dire
tions for future resear
h.
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3.2 Multi-Resour
e Sharing-Aware VM Maximization

We now present the MSAVMM (Multi-resour
e Sharing-Aware Virtual Ma
hine

Maximization) problem from the perspe
tive of a servi
e provider.

The allo
ation of multiple VMs that share a PM resour
e is 
ontrolled by the hyper-

visor software layer maintained by the servi
e provider. The pro
ess of memory re
lamation

between the physi
al resour
e and the requesting VMs is also managed by the hypervisor.

Moreover, the hypervisor is the only agent that has the ability to translate pages from PM

to VM and/or VM to VM. We assume the use of an external me
hanism, outside of, but in


oordination with the hypervisor, 
apable of managing a library of memory pages, denoted

by Π, required for the servi
es o�ered by the provider. The use of an external me
hanism,

outside of, but in 
oordination with the hypervisor was proposed by Pan et. al [71℄. Su
h an

approa
h allows for servi
e �exibility and minimizes any performan
e degradation resulting

from taxing the hypervisor more than it is ne
essary. The me
hanism runs 
on
urrently

with the hypervisor on the PM server Ω that provides the resour
es. The instantiation of a

VM implementing a virtualized servi
e o�ered by the provider, requires a given number of

memory pages. In order to identify the memory pages within Π, we denote by πi
, the i-th

memory page in Π. We assume that Π manages a �nite number N of pages, i.e., Π =

N
⋃

i=1

{πi}.

The notation used in this 
hapter is presented in Table 3.3.

We assume that there is a set V of M VMs that are 
andidates for instantiation.

We 
all this set, the set of "o�ine" VMs. We denote by Vj, the VM instan
e j, where

j = 1, . . . ,M , and Vj ∈ V, and by πi
j , the i-th memory page required by VM Vj . The

provider allo
ates and instantiates a subset of VMs, denoted by VH
, onto Ω. The allo
ation

should be determined based on how e�
ient in terms of revenue it is to allo
ate a VM

given the availability of PM resour
es. In general, our model 
an handle any number of

resour
e types, but for simpli
ity of presentation and the relevan
e to pra
ti
al settings,

we spe
i�
ally 
onsider three main types of resour
es: (i) memory, where the PM memory


apa
ity is denoted by Cm
; (ii) virtual CPUs (vCPUs), where the PM vCPU 
apa
ity is
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Table 3.3: MSAVMM Notation.

Expression Des
ription

Π Library of pages under provider's management.

N Number of memory pages under provider's management.

Vj Virtual ma
hine j.

V Set of "o�ine" VMs.

M Number of "o�ine" VMs.

VH
Subset of VMs maximizing provider's revenue, VH ⊂ V .

πi
The i-th memory page under provider's management.

skj Number of pages VM Vj shares at iteration k.

Ai
Shared page 
ounter among M VMs for the i-th page.

πi
j The i-th memory page requested by VM Vj .

pj revenue generated from allo
ating VM Vj .

Ω Provider's PM server resour
e.

Cm
Memory 
apa
ity (RAM) of PM server resour
e Ω (GB).

Cu
vCPU 
apa
ity of PM server resour
e Ω (
ores).

Cs
Storage 
apa
ity of PM server resour
e Ω (GB).

R Subset of PM resour
e types u and s, R = {u, s}.
qmj Requested amount of memory (RAM) by Vj (GB).

quj Requested number of vCPU by Vj (
ores).

qsj Requested amount of storage by Vj (GB).

Ek
j E�
ien
y metri
 of VM Vj at iteration k.

P(V) Power set of the set of �o�ine� virtual ma
hines V .
I Index of �o�ine� virtual ma
hines in P(V).

denoted by Cu
; and (iii) storage, where the PM storage 
apa
ity is denoted by Cs

. We

denote by R the subset of resour
e types 
omposed of vCPUs (type denoted by u) and

storage (type denoted by s), that is, R = {u, s}. We do not in
lude the memory resour
e

type in R sin
e it is treated di�erently, due to page sharing. Ea
h VM Vj requires a given

amount of ea
h resour
e type as follows: qmj amount of memory, quj amount of vCPUs, and

qsj amount of storage. We assume that the requests for resour
es from any single VM 
an be

satis�ed by the provider (i.e., qmj ≤ Cm
, quj ≤ Cu

, and qsj ≤ Cs
, for any j = 1, . . . ,M). We

now introdu
e the MSAVMM problem as follows:

MSAVMM problem: Given a set of M "o�ine" VMs V, with ea
h VM Vj yielding

a revenue pj upon allo
ation of the required amount of memory, qmj , number of

vCPUs, quj , and amount of storage, qsj , determine a subset VH ⊂ V of VMs that


an be allo
ated onto server Ω, 
onsidering the PM memory 
apa
ity Cm
, the

available number of vCPUs, Cu
, the PM storage 
apa
ity, Cs

, and the sharing
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of memory pages, su
h that the total revenue, P =
∑

j:Vj∈VH

pj , obtained by the

provider is maximized.

The formulation of MSAVMM is novel in that it 
onsiders the allo
ation of multiple types

of resour
es and, most importantly, it 
onsiders page sharing for the memory resour
e. If

the formulation disregarded page sharing, then the problem 
ould have been redu
ed to

the standard multi-dimensional knapsa
k problem [52℄, for whi
h the VMs are the items

and the PM is the multi-dimensional knapsa
k (with dimensions given by the 
apa
ities of

the multiple resour
e types). Existing algorithms for solving the multi-dimensional knapsa
k

problem would not be appropriate for solving MSAVMM, leading to revenue loses. MSAVMM

represents a new 
lass of multidimensional-knapsa
k problems with overlapping items.

By 
onsidering page sharing, more VMs may be allo
ated to utilize more e�
iently

the memory resour
e. Therefore, the servi
e provider may in
rease its potential for revenue

as a result of implementing sharing-aware based allo
ations. To the best of our knowledge,

no algorithms for solving the multi-resour
e sharing-aware VM allo
ation problem have been

proposed in the literature.

3.3 Binary Multilinear Program Formulation

In this se
tion, we propose a multilinear programming formulation of MSAVMM. The

obje
tive of the servi
e provider is to instantiate a number of VMs whi
h maximizes the

revenue relative to the amount of available resour
es. Therefore, we formulate the MSAVMM

problem as a binary multilinear program (BMP), 
alled BMP-MSAVMM, as follows:

maximize: P =
∑

j:Vj∈V

pjxj (3.1)

subje
t to:

∑

j:Vj∈V

qrjxj ≤ Cr, ∀ r ∈ R (3.2)

∑

I∈P(V)

(−1)(|I|+1)σI

∏

k∈I

xk ≤ Cm
(3.3)

xj ∈ {0, 1}, ∀ j : Vj ∈ V. (3.4)



www.manaraa.com

43

The solution to this problem is a boolean de
ision ve
tor x ∈ {0, 1}M , where xj


orresponds to servi
e provider's de
ision to instantiate Vj, i.e., xj = 1, if Vj is instantiated,

and xj = 0, otherwise. The obje
tive fun
tion in Equation (3.1) 
orresponds to revenue, P ,

aggregated from the subset of instantiated VMs. The 
onstraint in Equation (3.2) ensures

that the subset of instantiated VMs do not request more resour
es than the servi
e provider

has available, that is, Cr
, where r = u for vCPUs, and r = s for storage. The 
onstraint in

Equation (3.3) ensures that the subset of instantiated VMs does not request more memory

than the servi
e provider has available and takes into a

ount the re
laimed memory through

page sharing. Lastly, the 
onstraint in Equation (3.4) expresses the fa
t that xj 's are binary

de
ision variables.

The 
onstraint in Equation (3.3) requires a more detailed explanation sin
e it 
aptures

the sharing of memory pages. To explain it, we 
onsider an example in whi
h four VMs

request instantiation onto the server, where the requested resour
es are given in the se
ond


olumn of Table 3.4. We 
onsider that only a total of 16 di�erent pages (π1
, π2

, . . . , π16
)

are going to be requested by these VMs.

Vj < qmj , quj , qsj , pj > |I| = 1 |I| = 2 |I| = 3 |I| = 4

V1 < 4, 1, 2, 0.95 > σ1 : 4 σ12 : 3 σ123 : 2 σ1234 : 1
V2 < 5, 1, 2, 1.05 > σ2 : 5 σ13 : 3 σ124 : 2
V3 < 7, 2, 2, 1.35 > σ3 : 7 σ14 : 3 σ134 : 2
V4 < 14, 4, 2, 1.80 > σ4 : 14 σ23 : 2 σ234 : 1

σ24 : 4
σ34 : 5

Table 3.4: VM Chara
teristi
s and Sharing Relationships.

The pages requested by ea
h of the four VMs are given in Figure 3.1. For example

V1 requests a total of 4 pages (pages marked with hat
hed boxes in Figure 3.1, the row


orresponding to V1). The verti
al bold lines 
onne
ting the hat
hed boxes in the �gure

mark the pages that are shared. For example, page π2
is required by V1, V2 and V3, and
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V1 : q
m
1

V2 : q
m
2

V3 : q
m
3

V4 : q
m
4

Π

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13 π14 π15 π16

Figure 3.1: Page Sharing Among VMs.

thus, the hat
hed boxes 
orresponding to it in the three VMs are 
onne
ted with a verti
al

bold line indi
ating that π2
is shared among the three VMs.

We now show how the sharing parameter σI used in 
onstraint (4.7) is determined.

We denote by P(V) the power set of the set V of available VMs and by I an element of

the power set V. The sharing parameter represents the number of shared pages among the

VMs in set I. For example for I = {1, 2, 3}, σ123 = 2, that is, two pages, π2
and π5

, are

shared among the three VMs 
onsidered. We 
al
ulate the sharing parameter σI for all the

sets I of the power set P(V) and organize them by the 
ardinality of I in Table 3.4. When

|I| = 1, the sharing parameter σI represents the amount of memory resour
e qmj in number

of pages requested by Vj, that is, σj = qmj . By 
ombining the set of values representing the

number of shared pages and the number of pages required by ea
h VM, we 
an dedu
e the

number of unique pages, i.e., those pages whi
h are required to instantiate a subset of VMs,

are managed only on
e in Π, and are available to be shared among requesting VMs. To


al
ulate the number of unique pages in Equation (3.3) we need to introdu
e an adjustment

parameter, (−1)(|I|+1)
, whi
h adjusts the 
al
ulation of the number of unique pages a

ording

to the 
ardinality of I. By referen
ing the data in Table 3.4, we 
an 
al
ulate how many

unique pages are required in order to instantiate the entire set of VMs and 
ompare this
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value to the available servi
e provider's memory 
apa
ity Cm
as follows:

(+1)(σ1 + σ2 + σ3 + σ4) +

(−1)(σ12 + σ13 + σ14 + σ23 + σ24 + σ34) +

(+1)(σ123 + σ124 + σ134 + σ234) + (−1)(σ1234) ≤ Cm

(3.5)

By substituting the values for σI from Table 3.4 and performing the 
al
ulation above

in Equation 3.5, we arrive at 16 unique pages whi
h is 
onsistent with the number of grey

boxes, i.e., those pages required to be managed by Π in order to instantiate all four VMs,

from Figure 3.1. In order for the servi
e provider to support the memory requests of all

four VMs, they would have to have an available memory 
apa
ity whi
h 
an support the

management of at least 16 pages. In most 
ases, only a subset of the VMs may be 
hosen for

instantiation based on the servi
e provider's memory resour
e. Therefore, the 
onstraint in

Equation (3.3) 
onsists of the produ
t of boolean de
ision variables, xk, where k is an index


orresponding to any VM within the VM subset 
ombination I, on the sharing parameter

σI , and the unique page adjustment parameter (−1)(|I|+1)
.

In order to solve BMP-MSAVMM, we use the AMPL [30℄ mathemati
al programming

framework and an open-sour
e solver, Couenne [8℄, 
apable of produ
ing exa
t solutions for

BMP-MSAVMM. Couenne employs a bran
h & bound algorithm for solving mixed integer

nonlinear programs; whi
h lends to our multilinear binary formulation. The 
onstraint in

Equation (3.3) of BMP-MSAVMM makes it a mixed integer nonlinear program. We submit

our model, data, and preferen
e for solver to NEOS [24℄, an internet-based optimization

servi
e, whi
h solves BMP-MSAVMM.

We solved the BMP-MSAVMM instan
e in the example given in Table 3.4, and the

solution 
onsists of instantiating V1, V2 and V4, generating $4.05 as the optimal revenue.

The exe
ution takes approximately 9.6 millise
onds. The exe
ution time in
reases dramat-

i
ally for larger instan
es, for example for an instan
e of MSAVMM with 20 VMs and 256

pages, the exe
ution time ex
eeds 20 minutes. These solvers 
an only be used for solving

small instan
es of MSAVMM; for solving large instan
es of MSAVMM, we need to rely on



www.manaraa.com

46

approximation algorithms. BMP-MSAVMM problem is a new and more 
omplex variant of

the multidimensional knapsa
k problem whi
h is strongly NP-hard [52℄. Therefore, we infer

that BMP-MSAVMM is also strongly NP-hard.

3.4 Greedy Approximation Algorithm (G-MSAVMM)

In this se
tion, we present the design of our greedy algorithm for solving theMSAVMM

problem. Our algorithm orders the 
andidate VMs a

ording to an e�
ien
y metri
 whi
h


onsiders the revenue of allo
ating the VMs, the 
apa
ity of the multiple resour
e types

(e.g., memory, vCPU and storage), and the potential for page sharing. Sin
e the fo
us is

on maximizing the revenue of the servi
e provider, the metri
 should take into a

ount the

revenue as the main fa
tor. After ea
h allo
ation, the e�
ien
y metri
 is re
al
ulated and

the greedy order is adjusted a

ordingly. Ea
h allo
ation represents an iteration (denoted

by k) of the greedy allo
ation pro
ess. The e�
ien
y metri
, Ek
j , 
orresponding to VM Vj

at iteration k is de�ned as follows:

Ek
j =

pj
√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

(3.6)

The e�
ien
y metri
 Ek
j represents the relative value of allo
ating VM Vj onto Ω

by 
onsidering the revenue, the number of resour
e types requested, and the potential for

sharing pages. More spe
i�
ally, the e�
ien
y metri
 represents the unit pri
e per normalized

resour
e.

The initial step in the allo
ation pro
ess, at iteration k = 0, sele
ts the �rst VM to be

allo
ated onto Ω, based on the order indu
ed by the e�
ien
y metri
. More spe
i�
ally, it

allo
ates �rst the VM that has the maximum value for the e�
ien
y metri
. The e�
ien
y

metri
 at k = 0 for all Vj ∈ V depends on the number of shared pages, skj , relative to all

Vj ∈ V, sin
e no other VMs have been allo
ated yet to share pages. At later iterations (i.e.,

k > 0) the e�
ien
y metri
 
onsiders the potential for sharing among the 
andidate VM and

the VMs that are 
urrently s
heduled to be allo
ated (i.e., VMs that are 
urrently in VH
).
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Algorithm 3 G-MSAVMM: Phase I

1: Input: Set of o�ine VM instan
es (V)
2: {Phase I: Initial VM Allo
ation based on the potential for page sharing in V}
3: [A℄ ← 0

4: VH ← ∅
5: ĩ, j̃ ← 0
6: for i = 1, . . . , N do

7: for all j : Vj ∈ V do

8: if (a
tivePage(πi
j)) then

9: Ai = Ai + 1

10: ĩ = argmax
i

{Ai}
11: for all j : Vj ∈ V do

12: if (a
tivePage(πĩ
j)) then

13: VH = VH ∪ {Vj}
14: for i = 1, . . . , N do

15: for all j : Vj ∈ VH
do

16: if (Ai > 1) and (a
tivePage(πi
j)) then

17: s0j = s0j + 1

18: for all j : Vj ∈ VH
do

19: E0
j =

pj
√

∑

r∈R

qr
j

Cr +
qm
j
−s0

j
+1

Cm

20: j̃ = argmax
j

{E0
j }

21: VH = {Vj̃}
22: V = V \ {Vj̃}
23: [Cm

, Cu
, Cs

℄ = [Cm
, Cu

, Cs
℄ - [qm

j̃
, qu

j̃
, qs

j̃
℄

24: for i = 1, . . . , N do

25: if (a
tivePage(πi
j̃
)) then

26: allo
atePage(πi
)

27: k ← 1

An interesting property of our e�
ien
y metri
 is that as k in
reases, skj ≤ sk+1
j , that is, the

potential for sharing monotoni
ally in
reases with k, for any k > 0.

We now des
ribe the proposed algorithm, 
alled G-MSAVMM, for solving theMSAVMM

problem. The algorithm is presented in phases by Algorithm 3 and Algorithm 4. G-MSAVMM


onsists of two phases distinguished by how the potential for sharing is determined. In the

�rst phase (Algorithm 3), the potential for page sharing is determined 
onsidering the shar-

ing among all the VMs in the o�ine set of VMs, V. In the se
ond phase (Algorithm 4), the

potential for sharing is determined by 
onsidering the sharing among the 
andidate VM and

the VMs that are 
urrently s
heduled to be allo
ated onto Ω.
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The input to G-MSAVMM in Algorithm 3 is a set of �o�ine� VMs, V. First, G-

MSAVMM initializes the shared page 
ounter array, A, (Line 3), the subset of allo
ated VMs,

VH
, (Line 4), and the indi
es used for sele
ting VMs (Line 5). The shared page 
ounter array

A is used to determine the potential for sharing pages among the VMs in V, that is, entry

Ai
is the number of o

urren
es of page πi

requested by the VMs in V. The pages requested

by the VMs in V are identi�ed and A is updated a

ordingly (Lines 6 through 9). Fun
tion,

a
tivePage() (Line 8), determines whether memory page πi
j from VM Vj is requested. If π

i
j

is requested, then a
tivePage() returns 1, otherwise it returns 0. The a
tivePage() fun
tion

uses information from a pre-pro
essing stage in whi
h the 
loud provider uses a set of staging

PMs to instantiate the requested VMs and determine their memory �ngerprints. The 
loud

provider 
ould implement a memory �ngerprinting te
hnique similar to the one presented by

Wood et al. [101℄. Then, the i-th memory page that is requested the most, is sele
ted, and

every Vj whi
h requests the i-th memory page is in
luded in the VM subset VH
(Lines 10

through 13). The next task is to 
al
ulate the number of shared pages for ea
h Vj ∈ VH
. If

there are memory pages shared by at least two VMs, (i.e., Ai > 1), and Vj requests the i-th

memory page, then the VM shared page 
ounter at the initial iteration s0j is updated (Lines

14 through 17). Then, our proposed e�
ien
y metri
 is 
al
ulated for ea
h Vj ∈ VH
(Lines 18

and 19), where the VM 
orresponding to the highest e�
ien
y value is identi�ed by index j̃

(Line 20). Vj̃ is then allo
ated to VH
(Line 21) and removed from V (Line 22). The three PM

resour
e 
apa
ities are then redu
ed by the amount of resour
e requests from Vj̃ (Line 23).

Note, we do not add the shared pages sk
j̃
ba
k into the PM resour
e 
apa
ity Cm

sin
e at

k = 0, Vj̃ is the �rst VM allo
ated and only has a potential for sharing pages with other VMs

to be allo
ated later. Any memory pages whi
h are deemed a
tive a

ording to a
tivePage()

are then allo
ated onto PM server Ω through allo
atePage() (Lines 24 through 26). After

the initial allo
ation a

ording to the potential for sharing, k is updated to 1 (Line 27).

The se
ond phase of G-SAVMM in Algorithm 4 starts by 
he
king the availability

of resour
es of ea
h type on the server Ω (Line 3). A variable flag is set to 1 (Line 4)
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Algorithm 4 G-MSAVMM: Phase II

1: {
ontinued . . . }

2: {Phase II: VM Allo
ation based on expli
it page sharing in VH
}

3: while ([Cm
, Cu

, Cs
℄ > 0) and (|V| > 0) do

4: flag ← 1
5: for i = 1, . . . , N do

6: for all j : Vj ∈ V do

7: if (a
tivePage(πi
j)) and (a
tivePage(πi

)) then

8: skj = skj + 1

9: for all j : Vj ∈ V do

10: Ek
j =

pj
√

∑

r∈R

qr
j

Cr +
qm
j
−sk

j
+1

Cm

11: j̃ = argmax
j

{Ek
j }

12: if (Cm − (qm
j̃
− sk

j̃
) < 0)or (Cu − qu

j̃
< 0)or (Cs − qs

j̃
< 0) then

13: flag← 0
14: V = V \ {Vj̃}
15: if (flag) then

16: VH = VH ∪ {Vj̃}
17: V = V \ {Vj̃}
18: [Cm

, Cu
, Cs

℄ = [Cm
, Cu

, Cs
℄ - [(qm

j̃
- sk

j̃
), qu

j̃
, qs

j̃
℄

19: for i = 1, . . . , N do

20: if (a
tivePage(πi
j̃
)) then

21: allo
atePage(πi
)

22: P = P + pj

23: k = k + 1

24: Ω← VH

25: exit

whi
h indi
ates a valid VM allo
ation upon identifying the VM that is allo
ated later in the

algorithm. The major di�eren
e between the �rst phase that 
onsiders potential sharing and

the se
ond phase is that in the se
ond phase the sharing is determined relative to the VMs

that are already s
heduled to be allo
ated on the server. The algorithm identi�es the pages

whi
h 
an be shared relative to memory pages already allo
ated, for every page requested

in ea
h remaining Vj ∈ V. For those memory pages required by Vj ∈ V whi
h are already

allo
ated, the shared page 
ounter skj is updated (Lines 5 through 8). Next, the e�
ien
y

metri
 is 
al
ulated for all Vj ∈ V (Lines 9 and 10) and the VM with the highest e�
ien
y

value is identi�ed by the index j̃ (Line 11). Prior to allo
ating Vj̃ , a 
he
k must determine

if the allo
ation will fully deplete any of the multiple types of resour
es provided by the PM
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(Line 12). If any of those resour
es are fully depleted, the flag variable is set to 0 (Line 13)

and Vj̃ is removed from V (Line 14) sin
e it 
annot be allo
ated. If flag is still 1, then Vj̃ is

stored in VH
and removed from V (Lines 16 and 17). The 
apa
ities of ea
h of the multiple

resour
es of the PM are then redu
ed a

ording to the resour
es requested by Vj̃ (Line 18),

that is, the PM memory 
apa
ity Cm
is redu
ed by qm

j̃
and sk

j̃
pages are added ba
k to the


apa
ity be
ause those pages are already allo
ated and do not 
ount against Cm
sin
e they

will be shared as a result of a previous VM allo
ation. Any new pages requested by Vj̃, if they

are not already allo
ated, are then allo
ated by 
alling allo
atePage() (Lines 19 through 21).

Next, the revenue pj from allo
ation of Vj ∈ VH
is a

umulated into P (Line 22). Lastly,

the iteration 
ount k is in
remented (Line 23) and the pro
ess 
ontinues until either one of

the PM resour
es are fully depleted, or until V = ∅, and then the VMs in the set VH
are

instantiated on the PM server Ω (Line 24).

We now present an example to show how G-MSAVMM works. We 
onsider a single

server with resour
e 
apa
ities: vCPU, Cu = 6 vCPUs; storage, Cs = 8 GB; and memory,

Cm = 16 pages. We 
onsider four VM requests 
hara
terized by the parameters given in

Table 2.2 (derived revenue, pj; vCPU request, quj ; storage request, q
s
j ; and memory request,

qmj , translated into number of pages). Figures 3.2, 3.3, and 3.4 show the details of ea
h

iteration k of G-MSAVMM. Within the Figures, page πi
j, (i = 1, . . . , 16 and j = 1, . . . , 4), is

identi�ed by a gray blo
k, if it is requested by Vj , or by an empty blo
k, if the page is not

requested by Vj. The number of gray blo
ks per VM 
orresponds to the total number of

pages translated from the requested amount of memory, qmj .

The �rst phase of G-MSAVMM is illustrated Figure 3.2. The array A in Figure 3.2,

stores these values per page and only the values where Ai > 1 indi
ate potential for page

sharing. The maximum value in A 
orresponds to the page that is shared the most among all

the pages in V. Based on the parameters of our example, π5
, where the max 
ount is identi�ed

in bold in array A (Figure 3.2), would be shared the most and all VMs whi
h request π5
would

be 
onsidered 
andidates for instantiation in the �rst phase of G-MSAVMM. The e�
ien
y
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pj quj qsj qmj s0j E0
j

V1 0.95 1 2 4 4 1.3742

V2 1.05 1 2 5 5 1.5169

V3 1.35 2 2 7 6 1.6040

V4 1.80 4 2 14 9 1.5898

V2

k = 0

P CuCs

VH = {∅},

1.05 1 2

0.00 6 8

V4 1.80 4 2

V3 1.35 2 2

V1 0.95 1 2

pj quj qsj

πi

A : 3 2 2 4 1 2 2 33 2 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.2: G-MSAVMM E�
ien
y Metri
 Cal
ulation: Iteration 0

pj quj qsj qmj s1j E1
j

V1 0.95 1 2 4 3 1.0585

V2 1.05 1 2 5 2 1.0357

V3 * * * * * *

V4 1.80 4 2 14 5 1.1514

V2

k = 1

P CuCs

VH = {V3}

1.05 1 2

1.35 4 6

V4 1.80 4 2

V3 1.35 2 2

V1 0.95 1 2

pj quj qsj

πi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.3: G-MSAVMM E�
ien
y Metri
 Cal
ulation: Iteration 1

metri
 value is then 
al
ulated for those VMs sharing the most requested page and, based on

the values given in Figure 3.2, the highest e�
ien
y metri
, 1.6040, is asso
iated with V3. All

pages requested by V3 are a
tivated in Π and added to subset VH
. The a
tivated pages under

provider management in Π are marked by gray boxes whi
h are 
onne
ted with verti
al lines

to the pages required by V3. Lastly, the server resour
e 
apa
ities are redu
ed as follows:

vCPUs, Cu = 4, storage, Cs = 6, and memory, Cm = 9, a

ording to V3 resour
e requests.

The servi
e provider then updates the derived revenue from instantiating V3, amounting to

1.35.
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pj quj qsj qmj s2j E2
j

V1 0.95 1 2 4 4 -

V2 1.05 1 2 5 5 -

V3 * * * * * *

V4 * * * * * *

V2

k = 2

P CuCs

VH = {V3, V4}

1.05 1 2

3.15 0 4

V4 1.80 4 2

V3 1.35 2 2

V1 0.95 1 2

pj quj qsj

πi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.4: G-MSAVMM E�
ien
y Metri
 Cal
ulation: Iteration 2

The next iteration of G-MSAVMM, 
orresponding to the �rst iteration of the greedy

phase (k = 1), is illustrated in Figure 3.3. In this iteration, G-MSAVMM �nds identi
al,

requested pages between VMs and the a
tive pages within Π. The e�
ien
y metri
 value

is 
al
ulated for all remaining VMs regardless of their potential for page sharing, where the

highest e�
ien
y metri
, 1.1514, is asso
iated with V4. Following the instantiation of V4,

the algorithm redu
es the server resour
e 
apa
ities a

ording to V4's resour
e request as

follows: vCPUs, Cu = 0, and storage, Cs = 4. For the server memory resour
e, V4 
onsists

of 14 pages, where 5 pages are shared with a
tive pages in Π (i.e., π3
, π5

, π7
, π9

, and π10
);

thereby, the server memory resour
e only needs to a

ount for π1
, π4

, π6
, π8

, and π11
to

π14
, in Π, whi
h are required to instantiate V4. Lastly, the revenue is updated to 3.15. At

this iteration, G-MSAVMM stops be
ause the memory resour
e has been exhausted and no

further VM instantiation is possible (Figure 3.4). The total revenue obtained by G-MSAVMM

for this example is $3.15, whi
h is less than $4.05, the optimal revenue obtained by solving

the BMP-MSAVMM.

A slightly largerMSAVMM instan
e 
onsisting of 20 syntheti
ally 
reated VMs, where

ea
h VM may request up to 256 pages and 
onsiders multiple resour
e requests, shows a sig-

ni�
ant di�eren
e in performan
e between BMP-MSAVMM and G-MSAVMM. By generating,

uniformly at random, VMs whi
h are pri
ed between $.30 for a single vCPU, 4 GBs of
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RAM, and 64 GBs of storage to $2.45 for a VM whi
h requests 16 vCPUs, 64 GBs of RAM,

and 128 GBs of storage, our results show BMP-MSAVMM a
quires 63% more revenue than

G-MSAVMM. Spe
i�
ally BMP-MSAVMM generated $19.88 whereas G-MSAVMM generated

$12.18 when implemented on a single server 
onsisting of 60 vCPUs, 1024 GBs of RAM, and

approximately 1 TB of storage. In the next se
tion, we determine the approximation ratio

for G-MSAVMM whi
h will 
hara
terize how far the solution obtained by G-MSAVMM 
an

be from the optimal solution.

3.5 G-MSAVMM Properties

In this se
tion, we investigate the approximability properties of our proposed algo-

rithm. We determine the approximation ratio of G-MSAVMM by 
onsidering a worst possible

server setup, ΩW
, for the MSAVMM problem. We 
onsider ΩW


onsisting of three resour
e

types: memory, vCPU, and storage. We assume that ΩW
has a small 
apa
ity for the mem-

ory resour
e, a large 
apa
ity for the vCPU resour
e, and a large 
apa
ity for the storage

resour
e.

Let VW
denote a worst-
ase instan
e of the MSAVMM problem, where VM Vĵ ∈ VW

does not share any memory pages with the other VMs in VW
. Then, let at least one VM

Vĵc ∈ VW
be 
omprised of pages whi
h are a 
omplement set of pages to VM Vĵ. In addition,

let the remaining VMs in VW
be 
omprised of either a subset of pages in VM Vĵc or be

equivalent to VM Vĵc . In either 
ase, the remaining VMs would be allo
ated onto ΩW
if Vĵc

were to be allo
ated �rst sin
e they all share the same memory pages and would not redu
e

the memory 
apa
ity of ΩW
.

We investigate this instan
e on server ΩW
with a limited memory 
apa
ity su
h that

either VM Vĵ or VM Vĵc 
an be allo
ated, but not both, while not depleting the vCPU and

storage 
apa
ities. If VM Vĵc is allo
ated, then all remaining VMs in VW \ {Vĵ}, will be

allo
ated as well due to page sharing and the freedom in both vCPU or storage 
apa
ities.

Else, VM Vĵ is allo
ated and utilizes the memory 
apa
ity enough to not allow any other

VM from VW
to be allo
ated. We assume that ΩW

has a large number of vCPUs available
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and a large storage 
apa
ity that allows a set of M VMs to be allo
ated. If either the vCPU

or storage 
apa
ities were small, then only a subset of VMs may be allo
ated due to vCPU

or storage 
onstraints in addition to the memory 
apa
ity.

Our design of VW
and ΩW

will exhibit the greatest di�eren
es between the optimal

revenue obtained by an optimal algorithm (e.g., exhaustive sear
h) and the revenue generated

from our greedy G-MSAVMM algorithm. If the memory 
apa
ity was larger than our proposed

setup, then the revenue generated from G-MSAVMM 
ould be 
loser to the optimal revenue

generated by the optimal algorithm. Therefore, a server that has low memory 
apa
ity, high

vCPU 
apa
ity, high storage 
apa
ity, and where page sharing o

urs, represents the worst


ase s
enario. In the following, we determine the approximation ratio for G-MSAVMM based

on the worst 
ase instan
e VW
and server ΩW

.

Theorem 3.5.1. The approximation ratio of G-MSAVMM isM
√

Cmax(|R|+ 1), where Cmax =

max{Cm, Cu, Cs}, R is the number of resour
es and M is the number of VMs.

Proof. Let the revenue obtained from an optimal solution be denoted by P ∗
, and the optimal

set of VMs whi
h generates P ∗
from VW

be denoted by VW
OPT , VW

OPT ⊂ VW
, where P ∗ =

∑

j:Vj∈VW
OPT

pj under server resour
e ΩW
.

Let the revenue obtained by G-MSAVMM be denoted by P , and the set of VMs whi
h

generate P from VW
be denoted by VW

GRD, VW
GRD ⊂ VW

, where P =
∑

j:Vj∈VW
GRD

pj under server

resour
e ΩW
.

Assume at k = 0, VM Vĵ is allo
ated by G-MSAVMM onto ΩW
; admitting the re-

lationship E0
j < E0

ĵ
, for any j 6= ĵ. Sin
e VM Vĵ does not share pages with VMs in VW

,

s0
ĵ
= 0, and by Equation 3.6,

pj
√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

<
pĵ

√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

(3.7)
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√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

pj < pĵ (3.8)

whi
h establishes the lower bound for pĵ in order for Vĵ to be sele
ted a

ording to our

e�
ien
y metri
 at k = 0. This implies that for any pĵ greater than the established lower

bound, VM Vĵ will be allo
ated �rst onto ΩW
from VW

by G-MSAVMM. Considering the

memory utilization of VM Vĵ and memory 
apa
ity of ΩW
, no other VM allo
ations 
an be

performed and k stops at 0. Sin
e P =
∑

j:Vj∈VW
GRD

pj , therefore P = pĵ.

Suppose through an exhaustive sear
h, the optimal revenue value P ∗
is 
al
ulated

whereby VM Vĵc is allo
ated �rst onto ΩW
. Sin
e every remaining VM in VW

is 
omprised

of a subset of pages in VM Vĵc , not in
luding VM Vĵ , then the exhaustive sear
h allo
ates

all remaining VMs onto ΩW
without depleting the vCPU and storage 
apa
ities. Therefore,

the optimal value P ∗ =
∑

j:Vj∈VW
OPT

pj implies P ∗ =
∑

j:Vj∈VW \{V
ĵ
}

pj.

In order to determine the approximation ratio for this instan
e of MSAVMM, we show

that P ∗ ≤ Pα, where α is the multipli
ative fa
tor that will give the approximation ratio of

G-MSAVMM. Therefore,

P ∗

P
=

∑

j:Vj∈VW
OPT

pj
∑

j:Vj∈VW
GRD

pj
(3.9)

=

∑

j:Vj∈VW \{V
ĵ
} pj

pĵ
(3.10)
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By substituting pj from Eq. 3.8, we obtain

P ∗

P
<

1

pĵ

∑

j:Vj∈VW \{V
ĵ
}

√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

pĵ (3.11)

=
∑

j:Vj∈VW \{V
ĵ
}

√

∑

r∈R

qrj
Cr +

qmj −skj+1

Cm

√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

(3.12)

=

∑

j:Vj∈VW \{V
ĵ
}

√

∑

r∈R

qr
j

Cr +
qm
j
−sk

j
+1

Cm

√

∑

r∈R

qr
ĵ

Cr +
qm
ĵ
−sk

ĵ
+1

Cm

(3.13)

Sin
e

√

√

√

√

∑

r∈R

qr
ĵ

Cr
+

qm
ĵ
− sk

ĵ
+ 1

Cm
≥

√

1

Cmax

(3.14)

where Cmax = max{Cm, Cu, Cs}, we obtain

P ∗

P
≤

√

Cmax

∑

j:Vj∈VW \{V
ĵ
}

√

√

√

√

∑

r∈R

qrj

Cr
+

qmj − skj + 1

Cm
(3.15)

Be
ause

∑

r∈R

qrj

Cr
≤

∑

r∈R

1 ≤ |R| (3.16)

and

qmj − skj + 1

Cm
≤ 1 (3.17)
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we have

P ∗

P
≤

√

Cmax

∑

j:Vj∈VW \{V
ĵ
}

(
√

|R|+ 1) (3.18)

Thus,

P ∗

P
≤ (M − 1)

√

Cmax

√

|R|+ 1 ≤M
√

Cmax(|R|+ 1) (3.19)

Therefore,

P ∗

P
is bounded by α = M

√

Cmax(|R|+ 1), whi
h results in an approximation

ratio of M
√

Cmax(|R|+ 1) for the G-MSAVMM algorithm.

We now investigate the time 
omplexity of G-MSAVMM. The running time is dom-

inated by the se
ond phase, the greedy phase. The while-loop (Line 29) is exe
uted a

maximum of M − 1 times sin
e one VM has already been inserted into VH
and there exists

instan
es where VH ⊆ V. Within the while-loop, the running time is dominated by the sear
h

and 
al
ulation of shared pages between the VMs in V and the a
tive pages on Ω (Lines 31

- 34). The sear
h and 
al
ulation are exe
uted a maximum of M − 1 times, 
orresponding

to the possible number of VMs at k = 1, by the number of a
tive pages to sear
h on Ω, thus

the running time is O(N(M − 1)). Then, the running time for the entire greedy phase is

O(N(M − 1)2). Thus, G-MSAVMM has an asymptoti
 running time of O(NM2) whi
h is

linear in the total number of pages and quadrati
 in the number of VM requests.

3.6 Experimental Results

In this se
tion, we des
ribe the experimental setup and perform extensive experiments

investigating the performan
e of G-MSAVMM against other VM maximization algorithms.

3.6.1 Experimental Setup

The software used in the experiments and tra
e pro
essing is implemented in C++

on 2.93 GHz Intel 64-bit Intel hexa-
ore dual-pro
essor systems within the Wayne State

University High Performan
e grid [102℄.
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Utilizing Google Cluster Usage Tra
es

For our experiments, we used the 
luster usage tra
es from workloads running on

Google 
ompute 
ells [83℄. A 
ompute 
ell is a set of ma
hines within a single 
luster,

supported by a 
ommon 
luster-management system. We used the publi
ly available Clus-

terData2011_1 data set whi
h reports the a
tivity for a 12k-ma
hine 
ell during May 2011

from Google Cloud Storage [37℄. While the data set is publi
ly available, extensive e�ort has

been exerted in order to obfus
ate information by normalizing, hashing and res
aling the

data to not expli
itly reveal a
tual information su
h as users, appli
ations, server spe
i�
a-

tions, et
. [84℄. As a result, resear
h fo
using on 
hara
terizing the many fa
ets of the data

set su
h as appli
ations [26℄, user behavior [1℄ and workloads [67℄ [81℄, have already been

thoroughly presented in the literature. The ClusterData2011_1 data set 
onsists of tables

grouped a

ording to ma
hines, jobs and tasks, whi
h are further grouped into 
ategories su
h

as attributes, 
onstraints, events, and usage. We fo
us on a single table, task_events, whi
h

provides normalized data of relevant requests for CPU, memory, and lo
al disk resour
es. In

order to generate a data set from task_events whi
h is meaningful to our investigation, we

employed a �ltering strategy as follows:

• Eliminate tra
es whi
h are missing information, i.e., a
quire tra
e if missing info = 0.

• Eliminate tra
es where task events are evi
ted, failed, killed, or lost, and eliminate any

tra
es with update events, i.e., a
quire tra
e if event type = 1.

• Eliminate tra
es where tasks have a low s
heduling 
lass. The s
heduling 
lass �eld


hara
terizes how sensitive a task is to laten
y. Sin
e our investigation fo
uses on

revenue maximization, we only 
on
ern ourselves with those tasks whi
h are 
lassi�ed

as high; re�e
ting a servi
e to revenue generating user requests [83℄. Due to obfus
ation,

we do not know exa
tly that every tra
e with a high s
heduling task is a revenue

generating user request; therefore, for our investigation we assume that tra
es at the

highest level of s
heduling 
lass are revenue generating user requests, i.e., a
quire tra
e

if s
heduling 
lass = 3.
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n1-standard-{size} : ( n1s{size} ) n1-highmem-{size} : ( n1m{size} ) n1-high
pu-{size} : ( n1
{size} )

{size} {1} {2} {4} {8} {16} {32} {2} {4} {8} {16} {32} {2} {4} {8} {16} {32}

Memory (GB) 3.75 7.50 15 30 60 120 13 26 52 104 208 1.80 3.60 7.20 14.40 28.80

vCPU 1 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Pri
e ($/hour) 0.050 0.100 0.200 0.400 0.800 1.600 0.126 0.252 0.504 1.008 2.016 0.760 0.152 0.304 0.608 1.216

Table 3.5: G-MSAVMM Experiment: VM Instan
e Types.

• Eliminate tra
es where tasks have a low priority and that are monitoring. We only


onsider tra
es 
orresponding to tasks 
lassi�ed as high priority, whi
h will be last to

be evi
ted in the 
ase of over-provisioning the ma
hine resour
e, i.e., a
quire tra
e if

priority ≥ 8 and priority 6= 10.

• Eliminate any tra
es that allow for tasks within a job to be pro
essed on di�erent

ma
hines. Sin
e our investigation only 
onsiders a single ma
hine resour
e, we only


onsider tra
es where the job 
onsists of tasks that must be allo
ated to a single

ma
hine, i.e., a
quire tra
e if di�erent ma
hines restri
tion = 0.

While the tra
e usage events in ClusterData-2011-1 supply a 
onsiderable amount of infor-

mation, our fo
us on revenue maximization requires ea
h tra
e in our experiments to be

augmented with a revenue value whi
h a servi
e provider would re
eive following the instan-

tiation of a VM request. Sin
e the tra
e usage data does not reveal the revenue a
quired

from hosting revenue generating user requests, we �t ea
h tra
e request in our experiments

to a pri
ed Google Compute Engine VM Instan
e [38℄, relative to its normalized memory

and 
pu request values and server 
apa
ity values. The 
hara
teristi
s of Google Compute

Engine VM instan
es are given in Table 3.5. Due to both data normalization and obfus
ation

te
hniques used in ClusterData-2011-1, identifying the exa
t server resour
es and extra
ting

its te
hni
al spe
i�
ation is not possible solely on the data provided. Therefore, our experi-

ments are 
ondu
ted by simulating the resour
e 
apa
ities of a Lenovo Flex System x880 X6

Compute Node (Intel Xeon E7-8890 v2) PM server with the following resour
e spe
i�
ations:

120 
ores (8 
hips × 15 
ores per 
hip); 2 TB memory (128 × 16 GB DDR3) and 9.6 TB

disk spa
e (24 × 400 GB SSD). The Lenovo Flex System x880 X6 Compute Node is the

highest rated server a

ording to the SPECvirt_s
2013 ben
hmark whi
h evaluates data-
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enter server performan
e and virtualized server 
onsolidation 
ondu
ted by the Standard

Performan
e Evaluation Corporation


© (SPEC), released in the 2nd quarter of 2015 [89℄.

Ea
h VM instan
e used in our experiments reports its 
hara
teristi
s; memory, vCPU,

storage, and pri
e. In order to �t ea
h VM request, t, from the tra
e usage set to a Google

VM Instan
e, we �rst 
al
ulate the produ
t of the normalized memory and CPU resour
e

request values in the �ltered data and the server's memory and vCPUs 
apa
ities, Cm
and

Cu
respe
tively. The resulting produ
ts represent a spe
i�
 amount of memory (in GB),

denoted by tm, and a number of vCPUs, denoted by tu, relative to the server spe
i�
ations.

For every Google Compute Engine VM Instan
e gy, y ∈ {1 . . . 16}, we denote its memory

requirement by gmy and its vCPU requirement by guy . We 
al
ulate ỹ, the index of the Google

Compute Engine VM Instan
e that minimizes the 2-norm relative error between t's requested

amount of memory and vCPUs and gy's requirements, as follows,

ỹ = argmin

y

√

( |tm − gmy |
Cm

)2

+

( |tu − guy |
Cu

)2

(3.20)

Then, we map the tra
e request t to the Google Compute Engine VM Instan
e gỹ,

that is, to the Google VM instan
e that �ts the requested resour
es the best. Lastly, the

storage usage values are not fully 
aptured within ClusterData-2011-1 tra
es due to Google

treating storage as a separate servi
e from Google Compute Engine [83℄. Therefore, we do

not use the VM storage request information within our experiments.

Modeling Page Sharing

Leveraging page sharing to maximize revenue requires the identi�
ation of appli-


ations and the operating system used by the instantiated VMs, whi
h are not revealed

within the ClusterData-2011-1 tra
e set. Although, ea
h task event operates within its own


ontainer [83℄, we treat ea
h task event as a VM instan
e under various operating system

software.

For our experiments, we 
onsider the page 
ontent similarity per
entages among OSs

reported by Bazarbayev et al. [7℄. These per
entages are given in Figure 3.5. We 
on-
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Figure 3.5: Page Sharing Per
entages Table: OS.

sider �xed page sharing per
entages for every possible OS 
ombination 
onsidered in our

experiments. Ea
h entry in the sharing table represents a page sharing per
entage value

de�ned as the per
entage of the OS memory of the already hosted VM that 
an be shared

by the OS of the newly arrived VM. Ea
h VM in our experiment will sele
t uniformly at

random one of three versions of three OSs: CentOS Server x86_64 (C6.0-6.2); Windows

Server 64bit (W64b), Windows Server R2 (WR2), Windows Server R2 SQL (WR2S); and

Red Hat Enterprise Linux x86_64 (R6.0-6.2).

To show how page sharing works in our experiment, if a server has a VM whi
h has

sele
ted CentOS server 6.0 (C6.0) as its OS and another VM whi
h is attempting to be


ollo
ated on the same server has sele
ted CentOS server 6.2 (C6.2), then the VM whi
h

sele
ted C6.0 will share 28% of C6.2's OS pages. Sin
e C6.0's OS image size is .77 GB and

the amount of memory that is shared between C6.0 and C6.2 is 220 MB, then the sharing

per
entage is 
al
ulated as

220MB

.77GB
= 28%. The amount of memory sharing and image sizes

are those determined by Bazarbayev et. al [7℄. On the other hand, if a server has a VM whi
h

has sele
ted CentOS server 6.2 (C6.2) as its OS and another VM whi
h is attempting to be


ollo
ated on the same server has sele
ted CentOS server 6.0 (C6.0), then the VM whi
h



www.manaraa.com

62

sele
ted C6.2 will share 11% of C6.0's OS pages. Sin
e C6.2's OS image size is 1.96 GB

and the amount of memory that is shared between C6.0 and C6.2 is still 220 MB, then the

sharing per
entage is 
al
ulated as

220MB

1.96GB
= 11%. As 
an be seen from the above example,

C6.0 and C6.2 share the same amount of memory in both 
ases, but the per
entages are

di�erent be
ause they are 
al
ulated relative to di�erent bases, C6.2 in the �rst 
ase and

C6.0 in the se
ond 
ase. This asymmetry in terms of sharing per
entages also o

urs for

other OS 
ombinations given in Figure 3.5. Furthermore, we 
onsider that CentOS and Red

Hat Enterprise Linux (RHEL) distributions of the same version share approximately 95% of

their 
ontent. CentOS is an open-sour
e version of RHEL with the ex
eption of proprietary

updates and trademarks (see CentOS 6.2 Release Notes). We slightly s
ale down the page

sharing per
entages between two VMs with di�erent versions of RHEL and CentOS a

ording

to the inter-OS version sharing per
entages in Figure 3.5. Lastly, 
ases exist in whi
h two

operating systems will share very little memory, as was found by Sindelar et. al [86℄ for

Windows and Linux OS distributions. Sin
e the sharing is marginal in these 
ases, we assign

a sharing per
entage value of 0 when this o

urs, i.e., a VM operating under Windows Server

R2 (WR2) and a VM operating Red Hat Enterprise Linux 6.0 (R6.0) whi
h are 
ollo
ated

on the same server will not share any OS pages between them.

Comparing G-MSAVMM

We 
ompare our algorithm with other algorithms for VM maximization. Sin
e su
h

algorithms are not available in the literature, we de
ided to design several types of greedy

algorithms that use various greedy ordering methods based on single parameters su
h as

revenue, number of shared pages, vCPUs, and amount of memory, and use them in our

experiments. Thus, we 
ompare G-MSAVMM with four algorithms that are variants of G-

MSAVMM: P-DO whi
h allo
ates the VM requests in de
reasing order of their revenue (this


orresponds to G-MSAVMM with Ek
j = pj); SP-DO whi
h allo
ates the VM requests in

de
reasing order of the number of shared pages (this 
orresponds to G-MSAVMM where

Ek
j is 
al
ulated with pj = 1, and the �rst term under the square root equal to 0); C-IO
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Table 3.6: Algorithms Used in Experiments.

Algorithm Greedy ordering

G-MSAVMM De
reasing order of Ek
j .

P-DO De
reasing order of revenue.

SP-DO De
reasing order of the number of shared pages.

C-DO De
reasing order of the number of requested vCPUs.

C-IO In
reasing order of the number of requested vCPUs.

M-DO De
reasing order of the amount of requested memory.

M-IO In
reasing order of the amount of requested memory.

DR-DO De
reasing order of the dominant resour
e.

DR-IO In
reasing order of the dominant resour
e.

whi
h allo
ates the VM requests in in
reasing order of the number of requested vCPUs (this


orresponds to G-MSAVMM where Ek
j is 
al
ulated with pj = 1, and the last term under the

square root equal to 0); and, M-IO whi
h allo
ates the VM requests in in
reasing order of

the amount of requested memory (this 
orresponds to G-MSAVMM where Ek
j is 
omputed

with pj = 1, the �rst term under the square root equal to 0, and skj = 0). We also 
ompare

G-MSAVMM with four other greedy algorithms that are not variants of G-MSAVMM: C-DO

whi
h allo
ates the VM requests in de
reasing order of the number of requested vCPUs;

M-DO whi
h allo
ates the VM requests in de
reasing order of the amount of requested

memory; DR-DO, whi
h allo
ates VMs in de
reasing order of the dominant resour
e request;

and, DR-IO, whi
h allo
ates VMs in in
reasing order of the dominant resour
e request.

The last two algorithms are dynami
 in the sense that their greedy order is dependent

on the largest (dominant), normalized resour
e value given dynami
 provisioning of the

PM server resour
e. The algorithms used in our experiments are presented in Table 3.6.

Ea
h greedy algorithm used for 
omparison is designed to bene�t from page sharing at

the hypervisor level (i.e., on
e the allo
ation is de
ided by the algorithms, the hypervisor

identi�es the pages that are shared among the allo
ated VMs), but they do not 
onsider the

sharing of pages in determining the allo
ation. There is one ex
eption, SP-DO algorithm,

whi
h uses the number of shared pages to establish the greedy ordering, and thus, the

allo
ation.
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3.6.2 Analysis of Results

We now 
ompare the performan
e of G-MSAVMM against the other greedy algorithms


onsidered in our experiments. Our experiments 
onsist of using the �ltered Google 
luster-

usage tra
e events a

ording to our strategy des
ribed in Se
tion 3.6.1. We use a portion of

the transformed tra
e events whi
h 
onsists of 15,000 events. The distribution of VMs whi
h

are used in our experiments is illustrated in Figure 3.6.

We partition our tra
e into windows, i.e., uniform interval partitions of the entire

tra
e. Ea
h algorithm in our experiments will operate and allo
ate VM requests to a server

within a window a

ording to its design and available server resour
es. Our experiments


onsider three types of windows: W30, W50 and W100 where a server will attempt to

allo
ate a portion of the VMs. For example, in the 
ase of W50, the tra
e is partitioned into

50 VM requests per window and ea
h window is assigned a single server (300 servers total

in W50). For W30 and W100, the tra
e is divided into sets of 30 and 100 VM requests,

respe
tively. When at least one of the server resour
es has been exhausted in the 
urrent

window, the server is 
onsidered 
losed and any VM whi
h remains unallo
ated in the 
urrent

window is reje
ted. Then, the next window be
omes available and a new server 
omes online

ready for ea
h algorithm to undergo its allo
ation pro
ess until all 15,000 events have been


onsidered.

In Figure 3.7, we plot the in
rease of memory utilization when 
omparing G-MSAVMM

against sharing-oblivious versions of the algorithms listed in Table 3.6. For ea
h window

within W30, W50, and W100, we implemented sharing-oblivious versions of these algorithms,

meaning the hypervisor me
hanism whi
h performed the sear
h for shared pages was turned

o� and dupli
ate pages 
ould be present among 
ollo
ated VMs' memory requests. We,

then, re
orded the amount of memory ea
h sharing-oblivious algorithm utilized following

the allo
ation of VMs within ea
h window for W30, W50, and W100 to the available server

resour
e. Lastly, we implemented G-MSAVMM for ea
h window within W30, W50, and

W100, then re
orded the amount of memory that was utilized in the VM allo
ation. The
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Figure 3.6: Distribution of Google Type VMs in Experiment.

in
rease in memory utilization is the di�eren
e between G-MSAVMM's memory utilization

and the maximummemory utilization re
orded among the sharing-oblivious algorithms. The

algorithms whi
h generated the maximum memory utilization �u
tuated between sharing-

oblivious versions of SP-DO, M-IO, and DR-IO for ea
h window within W30, W50, and

W100. Memory tends to be the extraneous resour
e whi
h remains when the vCPU 
apa
ity

has been exhausted on the server whi
h hosts the VM requests. By taking page sharing

into 
onsideration, an in
rease of memory utilization 
an be a
hieved by a sharing-aware

algorithm su
h as G-MSAVMM so that less memory lies dormant when vCPU resour
es

have been exhausted. Based on our experiments, we have found that on average using G-

MSAVMM in
reases the overall memory utilization by approximately 26% a
ross W30, W50,

and W100. In Figure 3.7, we show that by using G-MSAVMM, the in
rease in memory

utilization is between 7% and 40% over all 500 windows in W30, between 10% and 41% over

all 300 windows in W50, and between 11% to 42% over all 150 windows in W100.

In Figure 3.8, we show the average aggregated revenue ratios obtained by the algo-

rithms using our tra
e. The revenue ratio is de�ned as an algorithm's obtained revenue

per window, over the revenue generated by the best performing algorithm within the same
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Figure 3.7: Sharing vs. non-Sharing Memory Utilization.

window. The revenue ratios indi
ate ea
h algorithm's performan
e proximity to the maxi-

mum revenue attained for that window within the window sequen
e. These revenue ratios

will never be larger than 1 for any of the algorithms during any window within the window

sequen
e. By aggregating these ratios and then dividing by the number of windows in the

sequen
e (e.g., for W50, there will be 300 windows within the window sequen
e), we 
al
ulate

the average aggregated revenue ratio, whi
h provides insight into whi
h algorithm exhibits

the best performan
e in terms of revenue.

G-MSAVMM obtains the highest average aggregated revenue ratio for all three window

intervals (Figure 3.8). Moreover, as the window size in
reases the eight 
ompeting algorithms

exhibit a de
rease in revenue whi
h is in 
ontrast to the in
rease in revenue exhibited by

G-MSAVMM. Our experiments show that as the windows grow larger and 
ontain greater

VM resour
e type heterogeneity, G-MSAVMM makes better greedy allo
ation de
isions for



www.manaraa.com

67

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

G-MSAVMM P-DO SP-DO C-DO C-IO M-DO M-IO DR-DO DR-IO

A
ve

ra
ge

 A
gg

re
ga

te
 R

ev
en

ue
 R

at
io

s

W30
W50

W100

Figure 3.8: Average Aggregate Revenue Ratios.

revenue generation than the 
ompeting algorithms. The next best performing algorithm is

C-IO whi
h tends to have similar behavior to G-MSAVMM due to the fa
t that vCPU is a

s
ar
e resour
e. G-SAVMM tends to outperform C-IO in terms of average aggregated revenue

ratios by approximately 3% in W30, 5% in W50, and 7% in W100.

We also investigate the performan
e of the algorithms in terms of average generated

revenue per server (Figure 3.9). The results are 
onsistent with those in Figure 3.8, in that

G-MSAVMM generates the highest average revenue followed by C-IO for all window types.

G-SAVMM outperforms C-IO when 
omparing the average revenue generated per server by

approximately 3% in W30 (or by $0.27), 5% in W50 (or by $0.43), and 8% in W100 (or by

$0.73). While these di�eren
es maybe small; operating at s
ale with millions of VMs and

tens of thousands of servers 
an lead to sizable losses of revenue if a less e�
ient algorithm

is used. Our results reveal that G-MSAVMM is the best performing algorithm, obtaining

greater revenue ratios and higher average revenue than the other eight algorithms.

When allo
ating VMs to server resour
es, the s
ar
est resour
e is the vCPU resour
e.

Therefore, algorithms whi
h 
onserve the vCPU resour
e and maximize the use of the less

s
ar
e memory resour
e while generating higher revenues are desirable. In Figure 3.10,
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we 
ompare the eight resour
e-
entri
 algorithms against G-MSAVMM in terms of resour
e

utilization. On the left side of Figure 3.10, we 
ompare three memory-
entri
 allo
ation

algorithms, SP-DO, M-DO and M-IO, against G-MSAVMM, and on the right, we 
ompare

three vCPU-
entri
 allo
ation algorithms, P-DO, C-DO and C-IO, against G-MSAVMM. P-

DO is a vCPU-
entri
 allo
ation algorithm sin
e the value of a VM is more related to

the s
ar
ity of the vCPU resour
e. Fo
using on memory, we plot the average utilization

per
entage for ea
h memory-
entri
 algorithm. SP-DO slightly outperforms G-MSAVMM by

.5% in W30, .8% in W50, and 1% in W100. While SP-DO utilizes slightly more memory

than G-MSAVMM, 
hoosing SP-DO as the allo
ation algorithmwould lead to signi�
antly less

revenue generated on average per server. Fo
using on vCPUs, we plot the average utilization

per
entage for ea
h vCPU-
entri
 algorithm. C-IO slightly outperforms G-MSAVMM by .5%

in W30 (
onserving .64 of a vCPU 
ore), .7% in W50 (
onserving .84 of a vCPU 
ore), and

1% in W100 (
onserving 1.16 vCPU 
ores). While C-IO utilizes slightly less vCPUs than G-

MSAVMM, 
hoosing C-IO as the allo
ation algorithm would lead to less revenue generated on

average, $.27 instead of $.73 per server. Although G-MSAVMM is a multi-resour
e allo
ation

algorithm, its memory utilization is marginally 
lose to the best memory-
entri
 algorithm,
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SP-DO, and its vCPU utilization is marginally 
lose to the best vCPU-
entri
 algorithm,

C-IO; subsequently generating the highest revenue among them.

Throughout our experiments, 
ertain algorithms obtain greater revenue relative to

G-MSAVMM for spe
i�
 windows within W30, W50 and W100. The performan
e of the

algorithms depends on the number and type of VMs requested within ea
h window. For

instan
e, when 
omparing G-MSAVMM to C-IO on a window with fairly homogeneous VM

requests, their allo
ation behavior is nearly identi
al. In 
ontrast, when the heterogene-

ity of VM types in a spe
i�
 window in
reases, they behave di�erently with G-MSAVMM

outperforming C-IO in terms of obtained revenue.

Lastly within our experiment, there are windows with spe
i�
 VM type requests


ombinations whi
h sti�e G-MSAVMM performan
e against other algorithms. By analyzing

the behaviors of these algorithms on spe
i�
 sets of VM requests, we 
an identify under whi
h

set of VM requests should a spe
i�
 allo
ation algorithm be used. In Figures 3.11, 3.12

and 3.13, we show the 
on�gurations of VM requests for spe
i�
 W30, W50 and W100

windows. This illustrates the di�eren
es in allo
ation behavior between G-MSAVMM and its

variants, P-DO, SP-DO, C-IO, and M-IO.
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Figure 3.11: W30: G-MSAVMM behavior for di�erent VM request 
on�gurations.

In ea
h of the �gures, we denote by µ+
on the horizontal axis, the VM requests


ombinations in whi
h the allo
ation results in the largest revenue for G-MSAVMM. Likewise,

we denote by µ−
, the VM requests 
ombinations in whi
h the allo
ation results in the

largest revenue for P-DO, SP-DO, C-IO and M-IO. Lastly, we denote by µ0
the VM requests


ombinations in whi
h G-MSAVMM's revenue is the same as that of P-DO, SP-DO, C-IO, and

M-IO. While some outlier 
ombinations exist (e.g., P-DO at µ0
in W50), our results show that

G-MSAVMM tends to outperform all other algorithms when VM requests are heterogeneous

both with respe
t to the VM 
hara
teristi
s and the number of VMs of ea
h type requested

within the windows.

3.7 Summary

We designed a sharing-aware greedy approximation algorithm (G-MSAVMM) for solv-

ing the multi-resour
e sharing-aware VMmaximization problem. We showed that G-MSAVMM

is a M
√

Cmax(|R|+ 1)-approximation algorithm, where M is the number of VM instan
es
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Figure 3.12: W50: G-MSAVMM behavior for di�erent VM request 
on�gurations.

that are to be allo
ated, Cmax is the maximum 
apa
ity among all types of resour
es, and

R is the number of resour
e types ex
ept the memory resour
e. The experimental results

showed that G-MSAVMM outperforms eight other VM allo
ation algorithms in terms of gen-

erated revenue and e�
ient utilization of resour
es. In future work, we plan on extending

G-MSAVMM to manage the VM allo
ation pro
ess in online environments. In
orporating

energy 
onsumption awareness and network virtualization into the multi-resour
e type VM

allo
ation problem would be an interesting extension.
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CHAPTER 4: MULTI-RESOURCE VM PACKING

4.1 Introdu
tion

Cloud adoption by government, industrial, and a
ademi
 institutions has 
reated

opportunities for providers to o�er servi
es through �exible infrastru
tures based on vir-

tualization te
hnologies. Industry fore
asts predi
t that by 2019 approximately 80% of all

workloads will be managed through data 
enter virtualization servi
es [18℄. A 
hallenge

fa
ing 
loud servi
e providers is the development of e�
ient resour
e allo
ation me
hanisms

allowing them to redu
e the 
osts and in
rease their pro�ts.

Current virtualization te
hnologies in
orporate me
hanisms that perform memory

re
lamation, i.e., me
hanisms that regulate/
onserve memory resour
es when multiple VMs

are instantiated through a hypervisor layer. The dedupli
ation of similar memory pages

between two or more VMs instantiated through the same hypervisor layer, i.e., page-sharing,

is an example of su
h me
hanisms whi
h are 
ommon to both open sour
e and proprietary

platforms. Page-sharing and similar me
hanisms drive the development of more e�
ient

algorithms suitable for resour
e management. A variant of the VM resour
e allo
ation

problem motivated by these developments is the VM Pa
king problem [86℄.

The VM Pa
king problem 
onsiders instantiating multiple VMs in an �o�ine� setting

whi
h utilizes hypervisors as an ar
hite
tural layer on top of physi
al servers, allowing for

page-sharing; resulting in redu
ed utilization of the memory resour
e. Traditionally, VM

allo
ation problems with multiple resour
e requirements have been modeled as ve
tor bin

pa
king problems, where ea
h resour
e is represented as a ve
tor 
omponent. The goal is to

minimize the number of a
tive servers used in order to instantiate a set of VMs a

ording to

server allo
ation poli
ies and available resour
e 
apa
ities. The online VM Pa
king problem


onsiders how to assign VMs, whose resour
e requests are unknown until they arrive to the


loud servi
e provider, su
h that the number of a
tive servers is minimized. Classi
al sharing-

oblivious ve
tor bin pa
king algorithms in an online setting where VMs request multiple

types of resour
es, will result in less e�
ient allo
ations sin
e they do not leverage memory
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sharing opportunities. Therefore, in this 
hapter, we design and investigate algorithms for

solving the sharing-aware online VM Pa
king problem whi
h results in a minimum number

of a
tive servers used to instantiate arriving VMs, where page-sharing o

urs relative to

VMs already instantiated on the servers. Sin
e hypervisors used by 
loud providers employ

memory re
lamation, our sharing-aware online algorithms leverage this utility; signi�
antly

redu
ing the number of servers needed to satisfy the user requests and impli
itly redu
ing

energy and servi
e 
osts.

4.1.1 Our Contribution

We propose sharing-aware online algorithms for solving the VM Pa
king problem with

multiple resour
e requirements and heterogeneous server 
apa
ities in an online setting. Our

proposed sharing-aware online algorithms are improved designs of 
lassi
al sharing-oblivious

online algorithms for ve
tor bin pa
king whi
h take page sharing into a

ount when making

allo
ation de
isions in 
loud environments with heterogeneous server 
apa
ities and hetero-

geneous resour
e VM requests. We introdu
e a new server resour
e s
ar
ity metri
 ne
essary

for designing sharing-aware online Best-Fit and Worst-Fit type algorithms. Our server re-

sour
e s
ar
ity metri
 
onsiders all VM resour
e requirements, server's available resour
e


apa
ities and page-sharing to identify a server with the highest priority to instantiate an

online VM request. We formulate the �o�ine� sharing-aware VM pa
king problem as a

multilinear boolean program whi
h when solved provides the optimal VM to server assign-

ments. We perform extensive experiments to 
ompare the performan
e of our sharing-aware

online VM pa
king algorithms against several sharing-oblivious pa
king algorithms. To the

best of our knowledge, no sharing-aware online algorithms for pa
king VMs with multiple

heterogeneous resour
e 
apa
ities and requirements have been proposed to date.

4.1.2 Related Work

Several variants of online ve
tor bin pa
king problem modeling the allo
ation of re-

sour
es in 
louds have been re
ently investigated. Song et al. [88℄ proposed a semi-online bin

pa
king algorithm for resour
e allo
ation. Their proposed setup allows VMs to be reshu�ed
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through live migration among the servers if resour
e 
onservation 
an be a
hieved. Li et

al. [57℄ introdu
ed novel variants of bin pa
king algorithms whi
h attempt to minimize the

total 
ost asso
iated with a server's utilization. Kamali and Ortiz [50℄ improved upon the

upper bound for Next-Fit and introdu
ed a new algorithm, Move To Front, whi
h performed

the best in the average 
ase for the online dynami
 bin pa
king total 
ost minimization

problem. Azar et al. [3℄ proposed ve
tor-bin pa
king algorithms, analyzed their performan
e

under various VM sequen
es, and established lower 
ompetitive ratios. Panigrahy et al. [72℄

studied heuristi
 variants of the First-Fit-De
reasing algorithm for �o�ine� VM allo
ation.

Resour
e awareness is a prevalent topi
 in designing resour
e allo
ation algorithms for


loud environments. Carli et al. [16℄ formulated a variant of the bin pa
king problem, 
alled

Variable-Sized Bin Pa
king with Cost and Item Fragmentation, whi
h is energy-aware when

attempting to pa
k 
loud resour
e requests onto servers in both online and �o�ine� settings.

Breitgand and Epstein [14℄ 
onsidered a variant of the bin pa
king problem 
alled Sto
hasti


Bin Pa
king (SBP) whi
h is risk-aware of network bandwidth 
onsumption, and designed

both online and approximation algorithms to solve it. Kleineweber et al. [54℄ investigated a

variant of the multi-dimensional bin pa
king problem whi
h is QoS-aware relative to 
loud

�le systems, spe
i�
 to storage virtualization. Zhao et al. [109℄ designed online VM algo-

rithms spe
i�
 to energy and SLA-violation awareness to in
rease a 
loud provider's revenue.

Xu et al. [105℄ developed a hardware heterogeneity, VM-inferen
e aware provisioning te
h-

nique whi
h fo
used on predi
ting MapRedu
e performan
e in the 
loud. Xiao et al. [104℄

modeled the s
aling of internet appli
ations in the 
loud as a 
lass of 
onstrained bin pa
k-

ing problem and solved the problem using an e�
ient semi-online algorithm whi
h supports

green-
omputing. Hao et al. [42℄ proposed an online, generalized VM pla
ement strategy

whi
h 
onsiders variation on 
loud ar
hite
tures, resour
e demand duration and data-
enter

lo
ation. Mashayekhy et al. [61℄ designed an online me
hanism for resour
e allo
ation and

pri
ing in 
louds. While these 
ontributions fo
us on VM allo
ation, none of them takes into

a

ount the potential for memory sharing when making allo
ation de
isions.
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Several systems su
h as Satori [65℄, Memory Buddies [101℄, and Di�eren
e Engine [41℄


onsidered hypervisor-based VM page-sharing, but did not address the design of sharing-

aware online algorithms for VM pa
king. Sindelar et al. [86℄ were the �rst to propose and

analyze �o�ine� sharing-aware algorithms for the VM Maximization and VM Pa
king prob-

lems under hierar
hi
al page sharing models. Our work in this 
hapter di�ers substantially

from Sindelar et al. [86℄ in that we design algorithms for an online setting, 
onsider multiple-

type VM resour
e requests, assume heterogeneous server 
apa
ities and operate under a

general sharing model whi
h frees the limitation of page sharing due to grouping VMs via

hierar
hi
al models.

In Chapters 2 and 3 and our previous work [77, 79℄, we 
onsidered the design of

sharing-aware �o�ine� algorithms for the VM Maximization problem under the general shar-

ing model. The VM Maximization problem 
onsidered in our previous work is di�erent from

the problem of VM Pa
king 
onsidered in this 
hapter. The obje
tive of the VM Maxi-

mization problem is to allo
ate VM instan
es onto a set of servers su
h that the pro�t is

maximized, while the obje
tive of the VM Pa
king problem is to minimize the number of

servers used to host user requested VM instan
es.

4.1.3 Organization

The rest of the 
hapter is organized as follows. In Se
tion 4.2, we de�ne the Sharing-

Aware Online VM Pa
king problem. In Se
tion 4.3, we present the design of our proposed

online sharing-aware algorithms. In Se
tion 4.4, we present and solve the �o�ine� version of

the sharing-aware VM pa
king problem. In Se
tion 4.5, we 
ompare the performan
e of our

proposed algorithms against that of several sharing-oblivious algorithms through extensive

experiments. In Se
tion 4.6, we summarize our results and present possible dire
tions for

future resear
h.
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Table 4.7: SA-OVMP Notation.

Expression Des
ription

S Set of available servers.

Vj Virtual ma
hine j.

Sk Server k.

S Set of ina
tive servers; S ⊂ S.
N Maximum number of pages between Sk and Vj .

M Number of servers in 
on�guration; |S| = M .

quj Requested number of CPUs by Vj (
ores).

qmj Requested amount of memory by Vj (GB).

qsj Requested amount of storage by Vj (GB).

Cu
k CPU 
apa
ity of server Sk (
ores).

Cm
k Memory 
apa
ity of server Sk (GB).

Cs
k Storage 
apa
ity of server Sk (GB).

R Subset of server resour
e types u and s; R = {u, s}.
ekj Server s
ar
ity metri
 relative to Sk and Vj .

skj Shared pages requested for Vj and managed by Sk.

V Set of available �o�ine� virtual ma
hines.

P(V) Power set of �o�ine� virtual ma
hines V .
J Index of �o�ine� virtual ma
hines in P(V).

4.2 SA-OVMP: Problem

We now introdu
e the Sharing-Aware Online Virtual Ma
hine Pa
king (SA-OVMP)

problem from the perspe
tive of a 
loud servi
e provider. The notation used in the 
hapter

is presented in Table 4.7.

We 
onsider a 
loud servi
e provider that o�ers resour
es in the form of VM instan
es

to 
loud users. A VM instan
e is denoted by Vj and is 
hara
terized by a tuple [quj , q
m
j , qsj ],

where quj is the number of requested CPUs, qmj is the amount of requested memory, and

qsj is the amount of requested storage. The 
loud servi
e provider has a set S of servers

available for instantiating user requested VMs. Ea
h server Sk ∈ S is 
hara
terized by a

tuple [Cu
k , C

m
k , Cs

k], where Cu
k is the number of available CPUs, Cm

k is the available memory


apa
ity, and Cs
k is the available storage 
apa
ity. We denote by R the subset of resour
e

types 
omposed of CPUs (type denoted by u) and storage (type denoted by s), that is,

R = {u, s}. The memory resour
e (type denoted by m) is not in
luded in R sin
e in the

design of our algorithms we will treat the memory resour
e di�erently by 
onsidering memory



www.manaraa.com

78

sharing among the VMs 
ollo
ated on the same server. For simpli
ity of presentation, we

only 
onsider these three types of resour
es; but the SA-OVMP problem and our algorithms

in Se
tion 4.3 
an be easily extended to a general setting with any number of resour
es.

When several VM instan
es are hosted on a server Sk, and they use a 
ommon subset

of memory pages, the total amount of memory allo
ated to those VM instan
es 
an be

redu
ed through page-sharing. For example, when two Mi
rosoft Windows 8 VM instan
es

are 
ollo
ated on the same server, they 
an share a signi�
ant amount of pages and the total

allo
ated memory to those two VM instan
es 
an be redu
ed signi�
antly 
ompared to the


ase in whi
h page sharing is not 
onsidered. To determine the amount of memory sharing

among 
ollo
ated VM instan
es, the 
loud provider uses a staging server that 
omputes

the memory �ngerprints [101℄ of the VM instan
e that is ready for allo
ation on one of

the servers. The �ngerprint of the VM instan
e is then used to determine the amount of

memory sharing (in pages), denoted by skj , whi
h o

urs among the 
urrently 
onsidered VM

instan
e, Vj , and the VM instan
es that are already hosted by server Sk. Bloom �lters [101℄

are used to identify the number of shared pages skj between VM Vj requested pages and pages

already allo
ated to server Sk. This pro
ess has runtime 
omplexity of O(N); where N is

the maximum between the number of pages managed by server Sk and those pages required

by Vj .

The 
loud provider is interested in hosting all VM instan
es requested by the users

while a
tivating the minimum amount of servers. The requests for VM instan
es arrive

one by one and the 
loud provider de
ides the assignment of a newly arrived VM request

without knowing any information about future requests. Thus, this is an online setting and

the 
loud provider must rely on online algorithms to assign VMs to servers. Our goal is to

design su
h online algorithms for VM pa
king that take the sharing of memory into a

ount

when making allo
ation de
isions. We formulate the Sharing-Aware Online VM Pa
king

(SA-OVMP) problem as follows,



www.manaraa.com

79

SA-OVMP problem: We 
onsider a 
loud provider having a set of servers, S =

{S1, S2, . . . , S|S|}, where ea
h server Sk ∈ S is 
hara
terized by [Cu
k , C

m
k , Cs

k℄, and

a sequen
e of VM requests {V1, V2 . . . , Vj, . . .}, arriving one by one, where ea
h

VM request Vj is 
hara
terized by [quj , qmj , qsj ℄. A VM request must be assigned

to a server Sk ∈ S upon arrival, so that the following 
apa
ity 
onstraints are

satis�ed:

Cm
k − qmj + skj ≥ 0 (4.1)

Cr
k − qrj ≥ 0, ∀r ∈ R (4.2)

where skj is the amount of memory sharing among the 
urrently 
onsidered in-

stan
e Vj and the VM instan
es that are already hosted by server Sk. The

obje
tive is to minimize the total number of a
tive servers ne
essary to serve the

requests.

Equation 4.1 is the memory 
apa
ity 
onstraint, guaranteeing that the available mem-

ory 
apa
ity of server Sk is not ex
eeded. The available 
apa
ity Cm
k − qmj is adjusted for

the amount of sharing, skj , between Vj and the VM instan
es already hosted by Sk. The


onstraints in Equation 4.2 guarantee that the 
apa
ities of the other types of resour
es of

server Sk are also not ex
eeded.

4.3 SA-OVMP: Algorithms

In this se
tion, we design sharing-aware online algorithms for solving the SA-OVMP

problem. Before des
ribing the algorithms we introdu
e few de�nitions and assumptions


on
erning the servers. The servers managed by the 
loud provider are in one of the following

two states: a
tive and ina
tive. An a
tive server is a server that is powered on and is


urrently 
onsidered for allo
ation by the algorithms. An ina
tive server is a server that is

not powered on and is not 
urrently 
onsidered for allo
ation by the algorithms. We denote

by S the set of ina
tive servers. When all the VMs hosted by a server are terminated the

server be
omes an ina
tive server and 
an be a
tivated in the future. Initially, all servers
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V6V5V4V3V2V1

S1 : {∅} S2 : {∅}

S3 : {∅} S4 : {∅}

Vj units {1} {2} {3} {4} {5} {6} Sk {1} {2} {3} {4}
qmj 4 MB 4 6 5 6 8 6 Cm

k 16 12 12 8

quj 4 CPUs 1 2 1 5 5 1 Cu
k 8 8 6 4

qsj 256 GB 1 1 2 1 2 1 Cs
k 8 4 2 1

Figure 4.1: SA-OVMP: VM Requests and Resour
e Con�guration.

are ina
tive servers, i.e., S = S. All the sharing-aware algorithms presented in the 
hapter

assume that the amount of sharing, skj , among the 
urrently arrived VM Vj and the VMs

hosted by a
tive server Sk, was already determined through memory �ngerprinting on the

staging servers as des
ribed in Se
tion 4.2.

To illustrate how ea
h of our sharing-aware online algorithms works, we 
onsider an

instan
e of the SA-OVMP problem with the resour
e 
on�guration presented in Figure 4.1.

Ea
h server in Figure 4.1, S1 through S4, is 
hara
terized by the number of CPUs (ea
h


ir
le 
orresponds to 4 CPU 
ores available in the left re
tangle within ea
h server image),

memory in MB (ea
h small square 
orresponds to 4 MB of available memory, in the middle,

larger square within ea
h server image) and storage in GB (to whi
h, a mesh blo
k will


orrespond to 256 GB of available memory and �ll the empty spa
e in the right re
tangle

within ea
h server image). The diagonal lines in ea
h of the servers 
orrespond to either

unavailable memory or storage. By representing the servers in this way, we 
an 
apture the

heterogeneity of available server resour
e 
apa
ities. Initially, there are no VMs allo
ated
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to the servers. This is represented by Sk : {∅} pla
ed above ea
h server image. Ea
h

VM in Figure 4.1, V1 through V6, is 
hara
terized by the same set of resour
e types as the

servers and their requests are identi�ed by shaded 
ir
les, shaded squares, and shaded mesh

blo
ks (using the same units of measure as used for the servers, where one 
ir
le 
orresponds

to 4 CPUs, one square 
orresponds to 4 MB, and one mesh blo
k 
orresponds to 256 GB

of storage). For instan
e, VM V4 requests 20 CPUs, 24 MB of memory for a spe
i�
 set

of appli
ations, libraries, et
., in exa
tly the memory pattern illustrated within the middle

square and, lastly, it requests 512 GB of storage identi�ed by the two mesh blo
ks at the

bottom of the VM image. When we illustrate how our sharing-aware online algorithms work,

the server resour
es will be redu
ed in
rementally in the in
luded table and the spa
e within

the server for ea
h resour
e type will be shaded a

ording to the respe
tive VM requests.

Lastly, page sharing is identi�ed when two or more VMs request memory by imposing a

shaded rhombus on top of the memory blo
k whi
h is shared. Page sharing is illustrated in

Figure 4.2 through Figure 4.12 for ea
h of the proposed algorithms.

4.3.1 Next-Fit-Sharing (NFS) Algorithm

In order to design NFS, we need to introdu
e a third type of state for servers, 
alled


losed. A 
losed server is already hosting VM instan
es and is not 
urrently 
onsidered for

allo
ation by the algorithm. The NFS algorithm is given in Algorithm 5 and works as follows.

Upon arrival of VM request Vj, the 
loud provider determines if Vj 
an be pa
ked onto the

a
tive server denoted by Sk̃ ∈ S \ S. Only one server is a
tive at any time and server S1

is initially a
tivated upon the �rst VM arrival. If a
tive server Sk̃ has enough 
apa
ity for

every resour
e type to instantiate Vj while 
onsidering the sharing of memory, sk̃j , then Vj is

pa
ked onto server Sk̃ (lines 3 and 4). Else, server Sk̃ is 
losed using a fun
tion 
lose (line 6)

and the sear
h begins for �nding a server whi
h has enough resour
e 
apa
ity to instantiate

Vj. We note that for problem instan
es with servers having the same resour
e types and size


hara
teristi
s, the next server will automati
ally su�
e if every server has enough 
apa
ity

for every VM type. For servers with heterogeneous resour
e 
hara
teristi
s (whi
h is the
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Algorithm 5 NFS

1: Input: VM instan
e arrival (Vj)

2: {S
k̃
: 
urrently a
tive server.}

3: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

4: Sk̃ ← Sk̃ ∪ {Vj}
5: else

6: 
lose(Sk̃)

7: k̃ ← k̃ + 1
8: while (k̃ ≤ |S|) do
9: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

10: a
tivate(S
k̃
)

11: S ← S \ {Sk̃}
12: break

13: k̃ ← k̃ + 1

14: if (k̃ > |S|) then
15: exit

16: S
k̃
← S

k̃
∪ {Vj}

17: [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ ← [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄


ase in our SA-OVMP problem), a sear
h must ensue to �nd a server whi
h meets the Vj's

resour
e demand.

Following server Sk̃'s 
losure, server index k̃ is in
remented (line 7). The algorithm

enters a while loop to sear
h for a server among the ina
tive servers whi
h 
an host Vj (line

8). If the Vj 's resour
e demand 
an be satis�ed by server Sk̃, then the server is a
tivated by

a fun
tion a
tivate, removed from the set of ina
tive servers, and the algorithm leaves the

while loop (lines 10 - 12). Else, the sear
h 
ontinues within the while loop by in
rementing

server index k̃ until a server is found with enough resour
es to host Vj (line 13). Following

the while loop, if the server index ex
eeds the number of available servers, Vj 
annot be

hosted and the algorithm exits (lines 14 and 15). Otherwise, the algorithm found a suitable

server Sk̃ within the available servers and Vj is allo
ated to Sk̃ (line 16). Lastly, server Sk̃'s

resour
e 
apa
ities are redu
ed a

ordingly (line 17).

The di�eren
e between NFS and a standard sharing-oblivious Next-Fit (NF) algorithm

modi�ed for VM allo
ation is that page sharing is a

ounted for in NFS and a sear
h is

performed to �nd a server whi
h meets the in
oming VM request. The standard sharing-
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S1 : {V1, V2, V3} S2 : {V4}

S3 : {V5} S4 : {V6}

Figure 4.2: NFS: VM Assignment

oblivious NF algorithm has a runtime of O(1) when allo
ating a VM request to servers,

where ea
h server has the same initial resour
e type 
apa
ities. In the 
ase of NFS, the

run time in
reases due to the sear
h for the next server whi
h 
an host Vj; resulting in a

run time of O(M) in the worst 
ase, where M is the number of servers under management.

Lastly, allo
ating Vj requires sear
hing for page sharing relative to only one a
tive server Sk̃

as des
ribed in Se
tion 4.2, thus resulting in a total run time of O(NM) for NFS.

Figure 4.2 illustrates the assignment of VMs to servers a

ording to NFS for the SA-

OVMP instan
e presented in Figure 4.1. All six VMs are assigned sequentially from V1 to V6.

VMs V1, V2 and V3 are assigned to S1; whi
h is initially a
tive. When V4 arrives, it 
annot

be assigned to S1 due to over-
ommitting the CPU 
apa
ity. Server S1 is then 
losed, S2

is found to satisfy V4's resour
e request at whi
h time S2 is a
tivated and V4 is assigned

to it. Next, V5 arrives and 
annot be assigned to S2 due to over-
ommitting the memory


apa
ity. Server S2 is then 
losed, S3 is found to satisfy V5's resour
e request at whi
h time

S3 is a
tivated and V5 is assigned to it. Lastly, V6 arrives and 
annot be assigned to S3 due

to over-
ommitting the storage 
apa
ity. Server S3 is then 
losed, S4 is found to satisfy V6's

resour
e request at whi
h time S4 is a
tivated and V6 is assigned to it. NFS requires all four

servers in order to assign the VMs. For the SA-OVMP problem instan
e 
onsidered here, the
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Algorithm 6 FFS

1: Input: VM instan
e arrival (Vj)

2: k̃ ← 0
3: flag ← 1

4: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

5: flag ← 0
6: break

7: k̃ ← k̃ + 1
8: if (flag) then

9: while (k̃ ≤ |S|) do
10: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

11: a
tivate(Sk̃)

12: S ← S \ {Sk̃}
13: break

14: k̃ ← k̃ + 1

15: if (k̃ > |S|) then
16: exit

17: S
k̃
← S

k̃
∪ {Vj}

18: [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ ← [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄

sharing-oblivious NF implementation would also require all four servers to assign the VMs;

albeit, more memory would be 
onsumed on server S1.

4.3.2 First-Fit-Sharing (FFS) Algorithm

We now introdu
e the FFS algorithm whi
h is similar to NFS ex
ept that servers are

never 
losed when a VM request 
annot �t into a server. Rather, any server that 
annot

a

ommodate the 
urrent VM request will remain a
tive in anti
ipation of another VM

request whi
h 
an be a

ommodated. FFS is given in Algorithm 6 and works as follows.

Upon arrival of VM request Vj, a sear
h ensues to determine the �rst a
tive server Sk̃

from the set of a
tive servers S\S, whi
h has enough 
apa
ity for every resour
e type to host

Vj while 
onsidering memory sharing in the amount of skj . To simplify the des
ription of the

algorithm, we assume that all a
tive servers are pla
ed before any of the ina
tive servers in

the sear
h sequen
e. The algorithm exe
utes a while loop to sear
h for the �rst a
tive server

Sk̃ that meets Vj's resour
e demand in 
onsideration of memory sharing (line 4). If a suitable

server is found among the a
tive servers, then flag is set to 0, and the algorithm leaves the

while loop (lines 5 - 7). Else, the sear
h 
ontinues within the while loop by in
rementing
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S1 : {V1, V2, V3, V6} S2 : {V4}

S3 : {V5} S4 : {∅}

Figure 4.3: FFS: VM Assignment

server index k̃ until a server with enough resour
es to host Vj is found (line 8). If there

are no a
tive servers whi
h 
an host Vj , flag is still 1, signalling the need to sear
h for a

suitable server among the set of ina
tive servers. The sear
h pro
ess among the ina
tive

servers (lines 10 - 15) is similar to NFS (Algorithm 5, lines 8 - 16) ex
ept that upon rea
hing

the flag if 
ondition, server index k̃ has already been in
remented to the �rst ina
tive server.

If k̃ is greater than the number of available servers in the a
tive or ina
tive server sear
h, the

algorithm exits (lines 16 - 17). If a suitable server Sk̃ has been found from either the a
tive

or ina
tive servers, Vj is assigned to Sk̃, and Sk̃'s resour
e 
apa
ities are redu
ed a

ordingly

(lines 18-19).

The di�eren
e between FFS and the standard sharing-oblivious First-Fit (FF) algo-

rithm modi�ed for VM allo
ation is that page sharing is a

ounted for in FFS and a sear
h

for a server whi
h meets the in
oming VM request is performed. FFS undergoes the same

�ngerprinting pro
ess mentioned in Se
tion 4.2 to determine similar pages (taking O(N)

time) and sear
hes for either the �rst a
tive server whi
h meets the VM resour
e request

over the set of a
tive servers, or determines the �rst ina
tive server to a
tivate in order to

satisfy the VM resour
e request. Sin
e the run time of the sear
h 
an be at most O(M),

FFS has a run time 
omplexity of O(NM) for allo
ating one VM request.
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In Figure 4.3, we present the assignment of VMs using FFS for the SA-OVMP instan
e

from Figure 4.1. VMs V1, V2 and V3 are assigned to S1; whi
h is initially a
tivated. When V4

arrives, it 
annot be assigned to S1 due to over-
ommitting the CPU 
apa
ity. Server S2 is

found to satisfy V4's resour
e request at whi
h time server S2's state is 
hanged from ina
tive

to a
tive and V4 is assigned to it. Next, V5 arrives and 
annot be assigned to either S1 or S2

due to over-
ommitting the CPU 
apa
ity. Server S3 is found to satisfy V5's resour
e request

at whi
h time server S3's state is 
hanged from ina
tive to a
tive and V5 is assigned to it.

Lastly, V6 arrives and a

ording to the sear
h, V6 
an be assigned to S1 sin
e it is still in an

a
tive state. By 
onsolidating the VM request to an already a
tivated server whi
h was not


losed, FFS a
tivates fewer servers, and thus, a
hieves better performan
e than NFS.

4.3.3 Best-Fit-Sharing (BFS) Algorithm

In order to design BFS, we introdu
e the server resour
e s
ar
ity metri
 whi
h 
hara
-

terizes the s
ar
ity of aggregate resour
es at a given server relative to the requested resour
es

by a VM. The 
lassi
al sharing-oblivious Best-Fit (BF) pa
king algorithm pla
es a new item

into the bin with the least remaining 
urrent 
apa
ity a

ording to one dimension, i.e., the

size of the item in one dimension. Sin
e the SA-OVMP problem 
onsiders multiple resour
e

requirements, we have to 
onsider all required resour
es and available 
apa
ities when de-

termining the appropriate server for allo
ating the VM request. To be able to a
hieve

this, we de�ne the server resour
e s
ar
ity metri
 as follows:

ekj =















































max

{

qmj −
√

sk
j

Cm
k

,
quj
Cu

k

,
qsj
Cs

k

}

if Cm
k − qmj + skj ≥ 0 &

Cu
k − quj ≥ 0 &

Cs
k − qsj ≥ 0

0 otherwise

(4.3)

The metri
 
hara
terizes the s
ar
est resour
e among all resour
e types from server Sk

relative to Vj's resour
e requirements. Ea
h resour
e request type is expressed as a remaining

resour
e ratio in Equation 4.3 relative to the available server 
apa
ity type, if Vj were to



www.manaraa.com

87

be instantiated on Sk. These ratios are only relevant if the Vj 's resour
e requests do not

over-
ommit any of the resour
e 
apa
ities on server Sk. The maximum remaining resour
e

ratio among the three resour
e types re�e
ts the s
ar
est remaining resour
e after server Sk

instantiates VM Vj . In Equation 4.3, sharing in�uen
es the memory request by

√

skj instead

of skj in the numerator. This way we avoid situations where VM Vj has a sizable memory

request whi
h shares a signi�
ant amount of pages with already hosted VMs making the

memory resour
e appear less s
ar
e when 
ompared to the other resour
es. Lastly, if Vj's

resour
e demand over-
ommits any of the server Sk's 
apa
ities, then the value of the server

resour
e s
ar
ity metri
 will be 0 indi
ating an absen
e of opportunity to assign Vj to Sk.

BFS is given in Algorithm 7 and works as follows. Upon the arrival of VM request

Vj, a sear
h ensues to determine the a
tive server Sk̃ ∈ S \ S whi
h would have the least re-

maining single resour
e after instantiating VM Vj (i.e., the s
ar
est resour
e). The algorithm


al
ulates the resour
e s
ar
ity metri
 for ea
h server in the set of a
tive servers through a

while loop (line 4). If at least one a
tive server has enough resour
e 
apa
ities to meet the

Vj's resour
e demand (line 5), then flag will be set to 1, whi
h guarantees that Vj will be

assigned to one of the a
tive servers, and the Vj resour
e s
ar
ity metri
 is 
al
ulated relative

to Sk (lines 6 and 7). Else, at least one of the resour
e requests violates at least one of the


urrent a
tive server 
apa
ities, and then the server resour
e s
ar
ity metri
 would be 0 for

those servers (line 9). Cal
ulating the resour
e s
ar
ity metri
 among the a
tive servers 
on-

tinues within the while loop by in
rementing server index k̃ until the �rst ina
tive server is

found (line 10). If flag is set to 1 following the while loop, then the index of the server with

the maximum resour
e s
ar
ity metri
 is determined and stored in k̃ (line 12). If no a
tive

servers have enough resour
es available to host Vj a

ording to resour
e s
ar
ity metri
, then

a sear
h for a suitable server among the set of ina
tive servers o

urs (lines 14 - 21) exa
tly as

in FFS (Algorithm 6, lines 10 - 17). Lastly, VM Vj is then assigned to server Sk̃ whi
h would

have the least remaining resour
e following instantiation and server Sk̃'s resour
e 
apa
ities

are redu
ed a

ording to Vj's resour
e demand (lines 22 - 23).
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Algorithm 7 BFS

1: Input: VM instan
e arrival (Vj)

2: k̃ ← 0
3: flag ← 0
4: if ([Cm

k , Cu
k , C

s
k℄ − [qmj − skj , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

5: flag ← 1

6: ekj ← max







qmj −
√

skj

Cm
k

,
quj

Cu
k

,
qsj

Cs
k







7: else

8: ekj ← 0

9: k̃ ← k̃ + 1
10: if (flag) then

11: k̃ ← argmax{ekj }
12: else

13: while (k̃ ≤ |S|) do
14: if ([Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄ ≥ [0, 0, 0℄) then

15: a
tivate(S
k̃
)

16: S ← S \ {S
k̃
}

17: break

18: k̃ ← k̃ + 1

19: if (k̃ > |S|) then
20: exit

21: S
k̃
← S

k̃
∪ {Vj}

22: [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ ← [Cm

k̃
, Cu

k̃
, Cs

k̃
℄ − [qmj − sk̃j , q

u
j , q

s
j ℄

There are several di�eren
es between BFS and the sharing-oblivious version of the

BF algorithm. From a general point of view, BF assigns items into bins based on the least

remaining spa
e after item pla
ement. When 
onsidering BF for VM allo
ation, the algorithm

would only a

ount for a single resour
e. When multiple resour
es are 
onsidered, BF 
an

have several interpretations for allo
ating VMs to servers based on various resour
es. BFS is

more pre
ise in that it is guided by the least remaining resour
e among all resour
es identi�ed

by the metri
 in Equation 4.3. Another di�eren
e is that BFS a

ounts for page sharing

within ea
h server when allo
ating the in
oming VMs, whereas the standard BF algorithm

does not. Provided the similarities between BFS and FFS, the run time 
omplexity of BFS is

also O(NM), whi
h in
ludes 
al
ulating the resour
e s
ar
ity metri
 for any in
oming VM

relative to the available, a
tive servers.
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V1 sk1 ek1 Cm
k Cu

k Cs
k

S1 0 0.250 16 8 8

S2 0 0.333 12 8 4

S3 0 0.5 12 6 2

S4 0 1.000 8 4 1

S1 : {∅} S2 : {∅}

S3 : {∅} S4 : {∅}

Figure 4.4: BFS: Init

V2 sk2 ek2 Cm
k Cu

k Cs
k

S1 0 0.375 16 8 8

S2 0 0.500 12 8 4

S3 0 0.500 12 6 2

S4 0 0.000 4 3 0

S1 : {∅} S2 : {∅}

S3 : {∅} S4 : {V1}

Figure 4.5: BFS: VM 1 Assignment

We now illustrate the assignment pro
ess of BFS using the SA-OVMP instan
e from

Figure 4.1. Figures 4.4, 4.5, and 4.6 illustrate the pro
ess for VMs V1 through V3. The

amount of sharing, sk1, and the server resour
e s
ar
ity metri
, ek1, are 
al
ulated relative

to V1 and the servers within the 
on�guration. Sin
e there are no VMs assigned to the

server, sk1 is zero and a server whi
h will leave the least amount of a single resour
e following

instantiation is sele
ted (i.e., the best �t server). Server S4 has the highest value for the

resour
e s
ar
ity metri
 sin
e the resour
e 
apa
ities are lower than the rest of the servers.

Therefore, V1 is assigned to S4 and S4's 
apa
ities are redu
ed a

ordingly and updated.

Next, V2 is ready for instantiation. All sk2, are 0 sin
e no pages are shared with V1.

The server resour
e s
ar
ity metri
 is the same for both S2 and S3. The resour
e whi
h will

yield the least remaining spa
e per our metri
 is the memory, where both S2 and S3 o�er

the same memory 
apa
ities. To break the tie, we sele
t the lowest indexed server with the
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V3 sk3 ek3 Cm
k Cu

k Cs
k

S1 0 0.313 16 8 8

S2 2 0.774 6 6 3

S3 0 1.000 12 6 2

S4 3 0.000 4 3 0

S1 : {∅} S2 : {V2}

S3 : {∅} S4 : {V1}

Figure 4.6: BFS: VM 2 Assignment

V4 sk4 ek4 Cm
k Cu

k Cs
k

S1 0 0.625 16 8 8

S2 2 0.942 6 6 3

S3 4 0.000 7 5 0

S4 3 0.000 4 3 0

S1 : {∅} S2 : {V2}

S3 : {V3} S4 : {V1}

Figure 4.7: BFS: VM 3 Assignment

highest server resour
e s
ar
ity metri
, e.g., S2, to host V2 and the resour
e 
apa
ities of

S2 are updated. Relative to server S4, e
4
2 = 0 sin
e there is not enough memory available.

Next, V3 is ready for instantiation. With V1 assigned to S4 and V2 assigned to S2, V3 has

two opportunities to share pages, leading to s23 = 2 and s32 = 3. Upon 
al
ulating the server

resour
e s
ar
ity metri
s, it is determined that V3 should be assigned to S3 due to the s
ar
ity

of storage whi
h o

urs following instantiation against the other servers.

The BFS assignment for VMs V4 through V6 are illustrated in Figures 4.7, 4.8 and

4.9. VM V4 will be assigned to S2 due to the CPU resour
e being the most s
ar
e resour
e

following instantiation when 
ompared to S1. The assignment of V5 to server S1 is by default

sin
e the other servers do not have enough CPU 
apa
ities to instantiate the request. Lastly,

V6 arrives and due to both the CPU requests, the resour
e s
ar
ity metri
 has a value of 1.0



www.manaraa.com

91

V5 sk5 ek5 Cm
k Cu

k Cs
k

S1 0 0.438 16 8 8

S2 4 0.000 2 1 2

S3 2 0.000 7 5 0

S4 2 0.000 4 3 0

S1 : {∅} S2 : {V2, V4}

S3 : {V3} S4 : {V1}

Figure 4.8: BFS: VM 4 Assignment

V6 sk6 ek6 Cm
k Cu

k Cs
k

S1 0 0.627 8 7 6

S2 4 1.000 2 1 2

S3 2 0.000 7 5 0

S4 2 0.000 4 3 0

S1 : {V5} S2 : {V2, V4}

S3 : {V3} S4 : {V1}

Figure 4.9: BFS: VM 5 Assignment

S1 : {V5} S2 : {V2, V4, V6}

S3 : {V3} S4 : {V1}

Figure 4.10: BFS: VM Final Assignment

relative to S2 whi
h is the largest. Thus, V6 is assigned to S2. The �nal VM assignment for

the SA-OVMP instan
e 
onsidered here is illustrated in Figure 4.10.
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4.3.4 Worst-Fit-Sharing (WFS) Algorithm

Sin
e WFS 
an be viewed as the dual of BFS and thus, its stru
ture and implementa-

tion are nearly identi
al to that of BFS, we will not provide a formal algorithmi
 des
ription

of it. The only di�eren
e between the two algorithms is that WFS allo
ates the new VM

request to an a
tive server with the minimum server resour
e s
ar
ity metri
, i.e., assigns the

VM to the server whi
h leaves the most remaining single resour
e following instantiation.

WFS requires a 
hange from argmax{ekj} to argmin{ekj} in BFS (line 11) and the maximum

operator in Equation 4.3 is 
hanged to the minimum operator. Due to the similarity to BFS,

the run time 
omplexity of WFS is also O(NM).

4.4 O�ine Sharing-Aware VM Pa
king

In this se
tion, we present a multilinear programming formulation of the �o�ine�

Sharing-Aware VM Pa
king problem. This problem di�ers from the online version in Se
-

tion 4.2 sin
e it assumes that the set of VM requests, V, is known a priori. In order for a

solution to exists, we have to guarantee that enough servers are available to host all Vj ∈ V.

The obje
tive of the servi
e provider is to host all Vj ∈ V, while minimizing the number

of a
tive servers ne
essary for instantiating the VMs in V. We formulate this problem as a

multilinear boolean program in Equations 4.4 through 4.10

A boolean de
ision ve
tor y ∈ {0, 1}M is the solution to our program from Equa-

tion (4.4); where the a
tive servers are identi�ed by yk = 1, ina
tive servers are identi�ed

by yk = 0, and B is the sum of the total number of a
tive servers over all 
omponents of y.

The 
onstraint in Equation (4.6) ensures that Vj is not assigned to more than one server,

where xjk re�e
ts the assignment of VM Vj to a single server Sk. Equation (4.7) is a re-

sour
e 
apa
ity 
onstraint whi
h ensures that the subset of instantiated VM requests do not

violate the server 
apa
ities, Cr
k , the provider has available in terms of CPUs, r = u, and

storage, r = s. Equation (4.8) is the memory 
apa
ity 
onstraint and ensures that the VMs

requesting memory do not violate the servi
e provider's memory 
apa
ities whi
h 
onsiders

the e�e
t of page dedupli
ation. Equations (4.9) and (4.10) ensure de
ision variables yk and
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S1 : {V1, V2, V5} S2 : {V3, V4, V6}

Figure 4.11: Optimal VM Assignment

xjk are boolean.

minimize: B =
∑

k:Sk∈S

yk (4.4)

subje
t to: (4.5)

∑

k:Sk∈S

xjk = 1, ∀j : Vj ∈ V (4.6)

∑

j:Vj∈V

qrjxjk ≤ ykC
r
k , ∀k : Sk ∈ S, ∀r ∈ R (4.7)

∑

J∈P(V)

(−1)(|J |+1)σJ

∏

ĵ∈J

xĵk ≤ ykC
m
k , ∀k : Sk ∈ S (4.8)

∀ yk ∈ {0, 1} (4.9)

∀ xjk ∈ {0, 1} (4.10)

Figure 4.11 shows the solution of our multilinear program for the SA-OVMP instan
e

from Figure 4.1. The optimal solution pa
ks VMs V1 through V6 onto two servers, leading to

a lower number of a
tive servers than any of the online algorithms proposed in Se
tion 4.3.

The novelty of our multilinear program formulation is in how the memory 
onstraint takes

into a

ount the memory requests with regards to page sharing. To des
ribe the 
onstraint,

we 
onsider an example using VMs V3, V4 and V6 and server S2.

In Equation (4.8), we denote by P(V), the power set of the set of available VMs, V,

and index the elements from this power set using J . We de�ne the sharing parameter σJ

as the variable whi
h represents the number of shared pages among the VMs in set J . As

an example, for |J | = 3, we have σ346 = 3, i.e., all VMs in J whi
h in
lude V3, V4 and
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V6 share 3 pages between them. We 
al
ulate the sharing parameter σJ for all the sets of

the power set P(V) indexed by J , and organize them by 
ardinality in Figure 4.12. When

|J | = 1, the sharing parameter σJ represents the amount of memory resour
e in number

of pages requested by Vj, i.e., σj = qmj . By 
ombining the set of values representing the

number of shared pages and the number of pages required by ea
h VM, we 
an dedu
e the

number of unique pages, i.e., pages whi
h are required to instantiate a subset of VMs and are

available to be shared among requesting VMs. To 
al
ulate the number of unique pages in

equation (4.8) we need to introdu
e an adjustment parameter, (−1)(|J |+1)
, whi
h adjusts the


al
ulation of the number of unique pages a

ording to the 
ardinality of J . By referen
ing

Figure 4.12, we 
an 
al
ulate how many unique pages are required in order to instantiate

VMs V3, V4 and V6 and 
ompare this to S2's memory 
apa
ity, Cm
2 , as follows,

(+1)(σ3 + σ4 + σ6) + (−1)(σ34 + σ36 + σ46) + (+1)(σ346) ≤ Cm
2

(4.11)

By substituting the values for σJ from Figure 4.12 and performing the 
al
ulation

above in Equation 4.11, we arrive at 8 unique pages whi
h are required to allo
ate V3, V4

and V6, when sharing pages is 
onsidered; 
onsistent with the number of 
olored pages in

Figure 4.12. In most 
ases, only a subset of the VMs may be 
hosen for instantiation based on

the servi
e provider's memory resour
e. Therefore, the 
onstraint in Equation (4.8) 
onsists

of the produ
t of boolean de
ision variables, xj̃k, where j̃ is an index 
orresponding to any

VM Vj̃ within the VM subset 
ombination J , on the sharing parameter σJ , and the unique

page adjustment parameter (−1)(|J |+1)
.

In order to optimally solve the �o�ine� Sharing-Aware VM Pa
king problem, we use

the AMPL [30℄ mathemati
al programming framework and an open-sour
e solver, Couenne [8℄,

whi
h employs a bran
h & bound algorithm for solving mixed integer nonlinear programs

in general; whi
h is appli
able to solving our multilinear program. The �o�ine� Sharing-

Aware VM Pa
king problem is a new and more 
omplex variant of the bin pa
king and

extends 
hara
teristi
s from the set-union bin pa
king problem initially 
onsidered in Tang
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|J | = 2|J | = 1 |J | = 3
σ3 = 5

σ4 = 6

σ6 = 6

σ34 = 4

σ36 = 3

σ46 = 5

σ346 = 3

S2 : {V3, V4, V6}

Figure 4.12: Sharing parameter values among V3, V4 and V6

and Denardo [93℄. Sin
e bin pa
king and its variants are strongly NP-hard, we infer that

our �o�ine� Sharing-Aware VM Pa
king problem is also strongly NP-hard. Therefore, solv-

ing the �o�ine� Sharing-Aware VM Pa
king problem is only pra
ti
al for small problems.

Solving the �o�ine� version of the SA-OVMP problem instan
e in Figure 4.1 only takes a few

se
onds; although, when we in
reased the number of VMs to 15 and the number of servers

to 8, the time required to solve the problem was approximately 22 minutes. Therefore,

heuristi
 methods, su
h as those des
ribed in Se
tion 4.3, are required in order to e�
iently

solve problem instan
es with a large number of VMs and servers 
onsidered in real-world

appli
ations.

4.5 Experimental Results

In this se
tion, we des
ribe the experimental setup in
luding our strategy for generat-

ing VM streams, simulating server 
on�gurations, and modeling page sharing. We perform

extensive experiments with our sharing-aware online algorithms and their sharing-oblivious


ounterparts and then analyze the results.

4.5.1 Experimental Setup

All software used for the experiments is implemented in C++ and is run on 2.93

GHz Intel hexa-
ore dual-pro
essor 64-bit systems within the Wayne State University HPC

Grid [102℄.
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Low Resour
e Request VMs in Experiments High Resour
e Request VMs in Experiments

Resour
e {n1s1} {n1s2} {n1
2} {n1m2} {n1
4} {n1
8} {n1s4} {n1m4} {n1s8} {n1m8} {n1s16} {n1
16}

Memory (GB) 3.75 7.50 1.80 13 3.6 7.20 15 26 30 52 60 14.40

CPU 1 2 2 2 4 8 4 4 8 8 16 16

Table 4.8: SA-OVMP Experiment: VM Instan
e Types.

VM Streams

Fairly re
ently, Google has made workload usage tra
es from Google 
ompute 
ells [83℄

available to the publi
. Resear
hers have thoroughly investigated various 
omponents of the

usage tra
es, su
h as appli
ations [26℄ and workloads [67℄ [81℄ [59℄. Signi�
ant to our ex-

periments is the arrival pattern of VM resour
e requests and how our proposed algorithms

behave under these patterns. Based on existing resear
h [81℄ [17℄, it has been 
on
luded that

there are no standard distributions whi
h �t the pattern of VM resour
e requests. Some

statisti
al properties have been revealed su
h as, resour
e requests exhibiting a heavy-tailed

distribution [81℄, requests re�e
ting degrees of fra
tal self-similarity [17℄, and the proportion

of lower memory and CPU requests signi�
antly outweigh higher memory and CPU requests

within the tra
e [82℄. Given the di�
ulties in identifying overall arrival and request 
hara
-

teristi
s from the tra
es, we design a broad range of VM streams whi
h provide numerous

variations on the mixture of requested VM types, arrival orderings (whi
h is signi�
ant for

online settings).

For our experiments, we 
onsider the resour
e request 
hara
teristi
s from Google

Compute Engine VM types whi
h are listed in Table 4.8 and are available online [38℄. We

divide the VMs into two 
ategories, low resour
e request and high resour
e request, based

mostly on the memory and CPU request 
ombinations. We keep n1m2 and n1
8 in the lower

resour
e 
ategory sin
e n1m2 only requests 2 CPUs and n1
8 requests a very low amount of

memory 
ompared to those VMs in the high resour
e request 
ategory. We de�ne a stream as

a sequen
e of either 500 or 1000 VMs requests whi
h exhibit various per
entages of mixture

between low and high VM resour
e requests. We design a set of VM streams a

ounting for
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n1s1
n1s2
n1c2

n1m2
n1c4
n1c8
n1s4

n1m4
n1s8

n1m8
n1s16
n1c16
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Figure 4.13: 85% Low Request 1000 VM Stream.

various VM type mixtures in in
rements of 5%, ranging from 5% low (and 95% high) to 95%

low (and 5% high) resour
e requests.

Therefore, in order to test the performan
e of our algorithms, we 
onsider 
ommon

and un
ommon workloads whi
h span the VM resour
e request mixtures. For ea
h VM

stream, we randomly sele
t VMs from ea
h of the two requesting 
ategories, until a desired

per
entage of mixture is a
hieved. As an example, for the 85% low request 1000 VM stream,

we sele
t uniformly at random 850 VMs from the low requesting 
ategory, leaving 150 VMs

to be sele
ted uniformly at random from the high requesting 
ategory in order to 
omplete

the stream. On
e all the streams have been designed, we generate �ve 
opies of ea
h stream

and identify them by r1 through r5. Ea
h r1 through r5 stream per mixture 
ombination

is then randomly shu�ed using the C++ fa
ility random_shu�e and the standard uniform

random generator. Ea
h r1 through r5 stream is shu�ed a di�erent number of times su
h

that the stream sequen
es exhibit a fairly signi�
ant variability from ea
h other. We a

ount

for 19 mixture 
ombinations with 5 di�erent orderings for ea
h mixture per 500 and 1000 VM

streams; totaling 190 unique VM streams used in our experiments. Figure 4.13 illustrates

a 85% low requesting resour
e 1000 VM r1 stream while Figure 4.14 illustrates a 15% low

requesting resour
e 1000 VM r2 stream. We show the di�erent VM types on the verti
al

axis and the arrival sequen
e of the 1000 VMs in the stream on the horizontal axis. Stream

r1 plot shows that the majority of the VM types 
orrespond to our low resour
e requests

(approximately 85% of the VM stream). Stream r2 plot shows that the majority of the VM

types 
orrespond to our low resour
e requests (approximately 15% of the VM stream).
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Figure 4.14: 15% Low Request 1000 VM Stream.

Server Con�gurations

Our experiments 
onsider the heterogeneity of a 
loud servi
e provider's ba
k-end

infrastru
ture, i.e., infrastru
ture 
omposed of multiple servers with various resour
e 
hara
-

teristi
s. Very few details have been revealed about the exa
t server 
on�gurations for major


loud servi
e providers' infrastru
ture. Although, resear
hers studying the Google workload

usage tra
es have provided fairly a

urate results re�e
ting the number of and resour
e 
har-

a
teristi
s for servers within the 
ompute 
ell from whi
h the tra
e set was logged [81℄ [59℄. It

was determined that approximately 12,477 servers were used in hosting the requests 
aptured

in the Google usage tra
e. Determining the exa
t 
apa
ity spe
i�
ations for these servers is

not possible due to normalization and obfus
ation te
hniques [84℄ used within the tra
e set;

yet, ea
h tra
e event within the set expresses a request ratio of CPU, RAM normalized to

the largest server 
on�guration (the values of whi
h are not identi�able from the tra
e set).

Using these ratios, resear
hers have been able to derive representations for the dis-

tribution of ma
hines and their resour
e 
hara
teristi
s. Liu et al. [59℄ 
ategorized these

servers into 15 di�erent 
apa
ity groups re�e
ting variations on (CPU, RAM) 
ombinations,

where ea
h 
ategory re�e
ts a per
entage of the 12,477 servers. The 
apa
ity groups, iden-

ti�ed by a tuple (CPU ratio, RAM ratio), are expressed as 
ombinations of CPU and RAM

server 
apa
ity ratios relative to the largest server 
apa
ities: .25, .50 and 1.00 for CPU;

.125, .25, .50, .75 and 1.00 for RAM. For instan
e, the 
apa
ity group (.50, .25) exhibits

server 
apa
ities that are 50% of the CPU resour
e, and 25% of the memory resour
e of the

largest ma
hine, and 
laims 31% of the 12,477 servers, or approximately 3,835 servers. For
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Figure 4.15: Server Con�gurations.

our experiments, we use the server 
apa
ity groups and per
entage of group population from

Liu et al. [59℄, and 
onsider that our largest server has resour
e 
apa
ities of 48 CPUs and

256 GB RAM. We determine all other server 
apa
ities relative to these values. We utilize

500 servers for the 500 VM streams and 1000 servers for the 1000 VM streams, where their

grouping and per
entage of population is 
onsistent with the results from Liu et al. [59℄.

Figure 4.15 illustrates the number of servers per group for the 500 and 1000 VM streams.

For example, we 
onsider 308 servers from the (24, 48) 
ategory (i.e., servers with 24 CPUs

and 48 GB of RAM). Lastly, we make available the servers with the smallest 
apa
ities �rst

throughout our experiments. In sequen
e, the server 
apa
ity groups ordering 
orresponds

to: (12, 64), (24, 32), (24, 64), (24, 128), (24, 196), (24, 256), (48, 128) and (48, 256). We

note that only a portion of the server 
apa
ity groups were a
tivated in our experiments,

but 
hose 500 and 1000 servers as the maximum number of servers that 
an be a
tivated.

Modeling Page Sharing

For our experiments, we abstra
t a subset of the available software from Google

Cloud Laun
her [36℄ for the Google VM types. The software 
ategories available to VMs

in our experiments are 
ontent management, databases, developer tools, infrastru
ture and

operating systems. Ea
h appli
ation software 
ategory 
omprises eight di�erent options, i.e.,

database software options su
h as MongoDB, MySQL, Cassandra, Redis, et
., as well as ten

operating systems, where four are spe
i�
 to server versions and six are desktop versions,

i.e., operating system software options su
h as Ubuntu 15.04, Ubuntu Server 14.04 LTS,

Windows Server 2008 R2, et
. Previous resear
h on page sharing has un
overed that the
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majority of page sharing o

urs between operating systems [86℄. Operating systems and their

versions 
an share a large amount of memory between them; yet, di�erent operating systems

may share almost no memory, e.g., 
ollo
ating VMs whi
h run Windows and Linux OS

distributions [86℄. Page sharing opportunities 
an be further identi�ed between server and

desktop distributions. In some 
ases, server distributions do not in
lude desktop pa
kages

and the desktop distributions do not in
lude server related pa
kages; but 
an share kernel

resour
es between them, e.g., Ubuntu 12.04 merges linux-image-server into linux-image-

generi
.

We model the memory pages requested by appli
ations and OSs using boolean ve
tors.

Ea
h appli
ation or OS memory request is 
hara
terized by su
h a ve
tor. The entries of

the ve
tors represent memory pages, where an entry with value 1 signi�es that the page

represented by that entry is requested, while an entry with value 0 signi�es that the page

is not requested. Extensive e�ort has been exerted to build unique ve
tors re�e
ting the

operating systems and appli
ations memory requirements su
h that the sharing out
omes

are fairly 
onsistent with the results presented by Sindelar et al. [86℄ and Bazarbayev et

al. [7℄. For ea
h VM in our experiments we sele
t uniformly at random one operating system

and one to four appli
ations to run. We 
onstrain some of the VM types to 
ertain operating

system and appli
ation 
ombinations, e.g., low request VMs su
h as n1s1 will not 
hoose OS

server distributions sin
e it is unlikely that a user would request a single 
pu, low memory

VM to host multiple instan
es. Ea
h server memory pages are also modelled by a boolean

ve
tor whi
h is populated with the 
orresponding entries from the appli
ation and OS ve
tors

of the VMs hosted by the server. On
e a VM has sele
ted its software 
ombination ve
tors

and a server is identi�ed to host the VM, the VM's ve
tors are 
ompared to the server's

ve
tor to determine the pages that 
an be shared.

4.5.2 Analysis of Results

We now 
ompare the performan
e of our proposed sharing-aware online algorithms

from Se
tion 4.3 against their sharing-oblivious 
ounterparts. Spe
i�
ally, we show that by
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Figure 4.16: Average Memory Redu
tion: 500 VM Stream.

using our sharing-aware online algorithms the average number of a
tivated servers is lower,

and a substantial memory redu
tion o

urs, whi
h frees up resour
es for more VMs to be

pa
ked. We also analyze some worst-
ase s
enarios for the two sets of algorithms.

In Figure 4.16 and Figure 4.17, we 
ompare the average amount of memory redu
tion

obtained when utilizing the sharing-aware over the sharing-oblivious algorithms for various

server 
apa
ity 
ategories and for 500 and 1000 VM streams, respe
tively. We 
ompare our

sharing-aware algorithms, NFS, FFS, BFS, and WFS with sharing-oblivious algorithms, Next-

Fit (NF), First-Fit (FF), Best-Fit (BF), and Worst-Fit (WF). The server 
apa
ity 
ategories

that we sample are identi�ed by a tuple (CPU, RAM). For instan
e, the server 
apa
ity


ategory (24, 64) 
onsists of the server 
apa
ity 
ategory whi
h in
ludes servers with 24

CPUs and 64 GB RAM. Along the horizontal axis for ea
h sharing-aware algorithm we

show the memory redu
tions for the following server 
apa
ity 
ategories: (12, 64), (24, 32),

(24, 64) and (24, 128). We note that only in very few instan
es servers outside of these


ategories were a
tivated during our experiment. Along the verti
al axis are the per
entages

of memory redu
tion obtained by our algorithms when 
ompared with their sharing-oblivious


ounterparts.

Quantifying the sharing dire
tly was not straightforward as the sharing-aware and

sharing-oblivious algorithms assigned di�erent VMs to di�erent servers. Therefore, we 
om-
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Figure 4.17: Average Memory Redu
tion: 1000 VM Stream.

pare the overall memory utilization between ea
h sharing-aware algorithm and its sharing-

oblivious 
ounterpart. For both 500 and 1000 VM streams, all the sharing-aware algorithms

tend to exhibit the greatest memory redu
tion on the server group with the largest amount

of memory, i.e., (24, 128). This is be
ause servers that o�er more memory 
an a

ommodate

more VMs as long as CPUs are available. When the number of assigned VMs in
reases, so

does the opportunity to share pages, whi
h leads to more VMs being assigned to the server,

if sharing-aware algorithms are utilized. Lastly, when 
omparing the results for the 500 VM

streams and the 1000 VM streams, we note that the 500 VM stream tends to generate the

larger redu
tions for the (24, 128) 
ase. From our results, the sharing-aware algorithms 
an

redu
e the required memory by approximately 25% in the best 
ase for the largest server


apa
ity 
ategory, i.e., (24, 128), and 
an redu
e the required memory by approximately 5%

for the worst 
ase in the smallest server 
apa
ity 
ategory, i.e., (12, 64).

In Figure 4.18 and Figure 4.19, we show the number of servers a
tivated by the

sharing-oblivious algorithms in ex
ess of those a
tivated by our sharing-aware algorithms.

We 
all these servers, the ex
ess servers. In the plots, the sharing-oblivious algorithms have

�ve bars, one for ea
h resour
e mixtures ranging from 65% to 85% in in
rements of 5%. For

ea
h of the requesting resour
e mixtures, we plot the number of ex
ess servers the sharing-

oblivious algorithms required over that required by the sharing-aware algorithms. On the
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Figure 4.18: Ex
ess A
tive Servers: 500 VM Stream.
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Figure 4.19: Ex
ess A
tive Servers: 1000 VM Stream.

horizontal axis, for ea
h sharing-oblivious algorithm we show the server 
apa
ity 
ategory

whi
h was found to exhibit the greatest di�eren
es.

We note that in Figure 4.18, NF exhibited the greatest di�eren
es for a di�erent

server 
apa
ity 
ategory, (24, 128), from the other algorithms in the experiment. For the

VM 500 stream, NF �lled most of the (24, 64) 
ategory servers. When 
omparing NF to

NFS in the (24, 64) 
ategory, they were nearly identi
al. The greatest varian
e between the

two algorithms in terms of the greatest number of ex
ess a
tive servers o

urred in the next

largest server 
apa
ity 
ategory, (24, 128). In the worst 
ases for the VM 500 stream, BF

for (24, 64) and FF for (24, 64) at resour
e mixture 70%, required 16 to 17 extra servers
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Figure 4.20: Average A
tive Servers Over All 500 VM Streams.

when 
ompared to our sharing-aware algorithms. The variability of ex
ess servers in the


ase of BF for (24, 64), is not as pronoun
ed as in the 
ase of FF for (24, 64) among the

represented resour
e mixtures. This implies that the di�eren
e in performan
e between FF

and FFS is smaller than in BF and BFS for the worst 
ases. The results for the VM 1000

stream are fairly similar in dynami
s to the ones for the VM 500 stream, with the largest

ex
esses o

urring in the 
ase of FF for (24, 64) with resour
e mixture 70%; a

ounting for

38 extra servers. From the results of our experiments, we 
on
lude that the sharing-aware

algorithms obtain a signi�
ant redu
tion of the number of a
tive servers whi
h impli
itly

leads to a signi�
ant redu
tion of the 
osts for the 
loud provider.

In Figure 4.20 and Figure 4.21, we 
ompare the average number of servers required

to host the VMs for the 500 and 1000 VM streams, respe
tively, over the entire range of

low-high requesting resour
e mixtures. Along the verti
al axis are the a
ronyms for ea
h

of the sharing-aware and sharing-oblivious algorithms and along the horizontal axis are the

per
entages of low resour
e requesting VMs in the VM stream. The heat map representation

has the darkest shade of gray when the highest number of servers are used, e.g., for the 500

VM stream the maximum value is 280 by NF, and has the lightest shade of gray when the

lowest number of bins are used, e.g., a minimum value of 77 by FFS also for the 500 VM

stream. The average number of servers are 
al
ulated by aggregating the number of a
tive

servers from VM streams r1 through r5 for ea
h requesting resour
e mixture, dividing by



www.manaraa.com

105

WF
WFS

BF
BFS

FF
FFS
NF

NFS

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Average Number of Active Servers: Sharing-Aware vs. Sharing-Oblivious Algorithms Over 1000 VM Stream

553
560
470
491
472
491
472
491

537
542
451
472
454
473
454
473

520
526
434
453
438
455
438
455

504
512
417
436
422
440
422
440

485
492
399
417
403
422
404
422

467
472
381
399
386
403
386
403

448
455
366
380
369
386
370
386

430
436
348
363
353
369
353
369

409
418
330
346
335
350
335
350

389
399
309
330
315
333
315
333

369
381
287
312
291
317
292
317

348
360
263
292
267
297
272
297

326
338
241
273
245
276
252
276

300
318
220
253
224
258
235
258

276
294
205
235
204
238
217
238

250
267
190
217
190
218
202
218

220
233
177
197
178
200
186
200

195
208
163
178
165
179
170
179

172
180
151
160
151
161
154
161

Figure 4.21: Average A
tive Servers Over All 1000 VM Streams.

�ve and 
al
ulating the 
eiling of the result. The �gures show that all the sharing-aware

online algorithms a
tivate fewer servers than their respe
tive sharing-oblivious analogues

in all mixtures. When 
omparing the sharing-aware online algorithms among themselves,

FFS a
tivates slightly less servers than BFS. WFS tends to over-a
tivate only slightly when


ompared to BFS in the lower requesting mixtures. As the number of lower requesting VMs

outweigh the higher requesting VMs in the VM stream, WFS tends to diverge away from the

BFS performan
e in most 
ases. Naturally, NFS performs the worst among the sharing-aware

algorithms. Moreover, we �nd that the greatest di�eren
es in both the 500 and 1000 VM

streams o

ur around the 60% to 85% low resour
e request VM streams whi
h re�e
ts the

many low and fewer high resour
e requests found typi
ally in usage tra
es from the 
urrent


loud servi
e providers.

4.6 Summary

We designed a family of sharing-aware online algorithms for solving the VM Pa
k-

ing problem. The experimental results showed that our proposed sharing-aware online al-

gorithms a
tivated a smaller average number of servers relative to their sharing-oblivious


ounterparts, dire
tly redu
ed the amount of required memory, and thus, the pa
king of the

VMs required fewer servers. Future work involves extending our algorithms to environments

with lightweight virtual 
ontainers su
h as Do
ker 
ontainers on the Google Kubernetes in-
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frastru
ture, and to streaming frameworks. Determining the theoreti
al performan
e bounds

for the sharing-aware online algorithms is another open avenue for future resear
h.
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CHAPTER 5: CONCLUSION

In this Ph.D. dissertation, we presented our resear
h a

omplishments in the design

and analysis of sharing-aware resour
e management algorithms for virtual 
omputing envi-

ronments. We 
on
lude the dissertation by summarizing our 
ontributions and des
ribing

possible future resear
h dire
tions.

5.1 Summary of Contributions

In Chapter 1, we detailed the 
on
epts whi
h serve as the foundation for under-

standing sharing-aware resour
e management by in
luding an introdu
tion to virtualization,

an explanation of how page sharing operates, a motivation for formulating page sharing

relationships, and a review of relevant approximation algorithm 
on
epts and models. In

Chapter 2, we addressed the problem of sharing-aware VM maximization, SAVMM, in a

general sharing model by designing a greedy approximation algorithm, G-SAVMM, based on

a new e�
ien
y metri
 and 
hara
terized its worst 
ase performan
e. We then performed

extensive experiments to evaluate the performan
e of G-SAVMM against other knapsa
k-like

VM allo
ation algorithms. Our results show that G-SAVMM generates higher revenue and

is e�
ient when 
ompared to the other knapsa
k-like VM allo
ation algorithms in our ex-

periments. In Chapter 3, we have addressed the problem of multi-resour
e sharing-aware

VM maximization, MSAVMM, in a general sharing model. We formulated MSAVMM as a

new multilinear binary program, BMP-MSAVMM, inspired by the 0-1 knapsa
k formulation

and solved it optimally using smallMSAVMM instan
es. For larger, more realisti
 MSAVMM

instan
es, we proposed and designed a greedy approximation algorithm, G-MSAVMM, based

on a new e�
ien
y metri
 and 
hara
terized its worst 
ase performan
e. In order to evaluate

G-MSAVMM, we detailed unique experiment design strategies through �ltering and synthe-

sizing Google 
luster workload tra
es while modeling page sharing behavior using existing

results from the literature. To demonstrate the in
rease in performan
e by G-MSAVMM, we


ompared it with the performan
e of several other knapsa
k-like VM allo
ation algorithms

using the �ltered and synthesized 
luster Google workload tra
es. Our results show that
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G-MSAVMM generates mu
h higher revenue and is extremely e�
ient when 
ompared to the

other algorithms in our experiments. In Chapter 4, we addressed the problem of sharing-

aware online VM pa
king with multiple resour
e requirements and heterogeneous server 
a-

pa
ities, SA-OVMP, in a general sharing model. We proposed and designed a family of new

sharing-aware online algorithms whi
h solves SA-OVMP; namely, NFS, FFS, BFS, and WFS.

We introdu
ed a new server resour
e s
ar
ity metri
 ne
essary for designing BFS and WFS

whi
h established 
loud server priorities for instantiating online VM requests. We then for-

mulated SA-OVMP as a new multilinear binary program inspired by the 0-1 bin-pa
king

formulation and have optimally solved it using small SA-OVMP instan
es. Lastly, we per-

formed extensive experiments to 
ompare the performan
e of our sharing-aware online VM

pa
king algorithms to that of their sharing-oblivious 
ounterparts using the Google 
luster

workload tra
es and the PM 
on�gurations on whi
h they are derived. Our results show

that the proposed family of sharing-aware online algorithms drasti
ally redu
es the number

of required PMs to instantiate the VM streams when 
ompared to their sharing-oblivious


ounterparts.

5.2 Future Resear
h Dire
tions

We believe our work will en
ourage new resear
h in the area of resour
e management

within virtual 
omputing environments. The possible future dire
tions are presented in the

next subse
tions.

5.2.1 Analyzing Sharing-Aware Online VM Pa
king Performan
e

Our previous work in VM Pa
king was fo
used on the design of online sharing-aware

resour
e management algorithms, investigated their run time 
omplexities and performed ex-

tensive experiments measuring their performan
e. To extend the work therein, deriving per-

forman
e bounds for the proposed algorithms using metri
s suitable for online environments,

e.g., 
ompetitive and relative worst order ratios, remain open problems in the literature.

Competitive ratios have been studied in the resear
h literature and have been used

to 
hara
terize the performan
e of online algorithms in various areas: VM resour
e manage-
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ment [3℄ [57℄ [88℄, pa
ket transmission [94℄, 
a
hing [51℄, paging [2℄ [87℄ and in generalized

bin pa
king settings [19℄ [31℄; yet, to the best of our knowledge, no study has fo
used on

determining 
ompetitive ratios for sharing-aware online resour
e management algorithms.

While the 
ompetitive ratio has been used in the resear
h literature to 
hara
terize

the behavior of online performan
e against o�ine performan
e, other metri
s [12℄, e.g., Max

/ Max ratio [9℄, random order ratio [53℄, et
., have evolved whi
h also gauge performan
e.

The relative worst order ratio [10℄ establishes a metri
 for 
omparing online algorithms di-

re
tly by measuring the performan
e of two 
omparable online algorithms on their respe
tive

worst 
ase input sequen
e. Relative worst order ratios have been studied in the resear
h lit-

erature and have been used to 
hara
terize the performan
e of newly developed bin pa
king

algorithms [10℄ [28℄, applied to the seat reservation [13℄ and paging problems [11℄; yet, to the

best of our knowledge, no study has fo
used on determining relative worst order ratios for

online resour
e management algorithms in a virtual 
omputing environment. In some 
ases,

the relative worst order ratio is a better quality of measure for online algorithms than the


ompetitive ratio [28℄.

5.2.2 Sharing-Aware Algorithms for Container Management

Future trends in virtual resour
e management must 
onsider new provisioning te
h-

niques as enterprises are operating at unpre
edented s
ales and experimenting with next-

generation te
hnologies. While VMs are the dominant medium for ma
hine instantiation

and operating system hosting in 
louds, 
ontainers are making a popular 
omeba
k from

their in
eption de
ades ago. Containers are a lightweight alternative to hypervisor-based

virtualization where, unlike hypervisors, 
ontainers do not have the overhead of abstra
t-

ing the PM hardware to virtualize resour
es. Instead, 
ontainers abstra
t the operating

system kernel, where the kernel 
an then be split into multiple, nested 
ontainers. As a

result, re
ent studies have shown the e�
ien
y of utilizing 
ontainers over standard VM

hypervisor-virtualization [29℄ [68℄ [103℄. Open sour
e s
heduling systems su
h as Google's

Kubernetes and Apa
he's Brooklyn or
hestration framework lead the way for enterprises to
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reveal new and e�
ient means of servi
e virtualization. When institutions su
h as Google

manage 2 billion virtual images weekly, the venue for engineering new algorithms at s
ale

and for next-generation virtual environments while further 
onserving resour
es and meeting

user demand appear to be wide open.

Google's Kubernetes engineering team has 
ompleted pod [40℄; a dynami
 
ontainer

pla
ement pro
edure within a 
luster inspired by knapsa
k heuristi
s. Studying the approx-

imability properties of the knapsa
k heuristi
 algorithms through pods is an open opportunity

of resear
h for both an online and o�ine setting. Furthermore, investigating the online 
on-

tainer to pod pa
king on 
ompute nodes may be studied to address the unique development

of systems for dynami
 
luster management. Lastly, dis
overing the approximability proper-

ties of bin pa
king algorithms spe
i�
 to 
ontainers is an open avenue of resear
h. Given the


urrent industry appeal of 
ontainers, extentions of our resear
h to sharing-aware algorithms

in 
ontainer-based virtualization environments would be a fruitful endeavor.

5.2.3 Sharing-Aware Streaming Resour
e Management

We envision an opportunity to extend our sharing-aware algorithms onto systems

whi
h 
onsider real-time distributed stream pro
essing. Real-time distributed stream pro-


essing is in
reasingly popular due to responding to events as they o

ur in areas su
h as

so
ial media, real-time analyti
s, fraud dete
tion, et
. Apa
he Storm [90℄ is an example

of a popular open sour
e real-time distributed stream pro
essing framework suitable for

these tasks. Therefore, minimizing resour
e 
onsumption therein would be advantageous to

systems whi
h manage these frameworks. In parti
ular, sharing memory resour
es among

multiple, dupli
ate data streams would redu
e overall system memory utilization. This is

espe
ially useful for appli
ations 
onsisting of streams whi
h have to be pre-allo
ated with a

spe
i�
 amount of memory to ensure pro
essing 
onsisten
y. Very re
ently, resour
e-aware

s
heduling for real-time distributed stream pro
essing systems have been proposed in the

literature [74℄. Therefore, we believe our resear
h 
an be translated to real-time distributed

stream pro
essing frameworks in order to improve their e�
ien
y.
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ABSTRACT
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Virtualization te
hnologies in 
loud 
omputing are ubiquitous throughout data 
en-

ters around the world where providers 
onsider operational 
osts and fast delivery guarantees

for a variety of pro�table servi
es. These providers should 
onsistently invoke measures for

in
reasing the e�
ien
ies of their virtualized servi
es in a 
ompetitive environment where

fast entry to market, te
hnology advan
ement, and servi
e pri
e di�erentials separate sus-

taining providers from antiquated ones. Therefore, providers seeking further e�
ien
ies and

revenue generating opportunities should 
onsider how their resour
es are managed in vir-

tual 
omputing environments whi
h leverage memory re
lamation te
hniques, spe
i�
ally

page-sharing ; motivating the design of new memory sharing-aware resour
e management

algorithms. In this dissertation, we design families of o�ine and online sharing-aware al-

gorithms for resour
e management in virtual 
omputing environments and investigate their

properties within a general sharing model. We evaluate our proposals by applying them to

heterogeneous resour
e domains where large, re-engineered tra
e dataset inputs are developed

in order to 
ompare our algorithms. Lastly, we outline their appli
ations to next-generation

virtualization te
hnologies and streaming ar
hite
tures.
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